AD-A007 921
COMPUTATIONAL REPRESENTATION OF
CONSTITUTIVE RELATIONS FOR POROUS
MATERIAL

Lynn Seaman, et al

Stanford Research Institute

Prepared for:

Defense Nuclear Agency

May 1974

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE




L/ L T ANN

AN 77/

ADAOO07921

®

AR DNA 3412F

COMPUTATIONAL REPRESENTATION
OF CONSTITUTIVE RELATIONS
FOR POROUS MATERIAL (V)

Stanford Research Institute
333 Ravenswood Avenue
Menlo Park, California 94026

SRI Project PYU-2407

May 1974
Final Report for Period 24 January 1973 to 31 March 1974

CONTRACT DNAO001-73-C-0119

Approved for public release;
distribution unlimited,

THIS WORK WAS SPONSORED B8Y THE DEFENSE
NUCLEAR AGENCY UNDER SUBTASK
NWED N99QA X AC306-03.

Review of this material does not imply Department of Defense endorsement of factual
accuracy or opinion,

Prepared for
Director
DEFENSE NUCLEAR AGENCY D D c

Washington, D.C. 20305 @Eﬂﬂ_ﬂ[ﬂ

APR 10 1975
STANFORD RESEARCH INSTITUTE E@EU_U..[Q
D

Menio Park, California 94025 - U.3.A.

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Dspartment of Commerce
Springtield, VA. 22151




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

7. AUTHORI(s)

REPORT DOCUMENTATION PAGE g e e LR
1. REPORT NUMBER 2. GOVT ACCESSION NO. | 3. RECIPIENT'S CATALOG NUMBER
DNA 3412F
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PFRIOD C?VERED
COMPUTAT IONAL REPRESENTATION OF CONSTITUTIVE Final Report
RELATIONS FOR POROUS MATERIAL (U) 24 January 1973 through

{—31 March 1974
6. PERFORMING ORG. REPORT NUMBER
SRI Project PYU-2407

8. CONTRACT OR GRANT NUMBERI(s)

Lynn Seaman
ol b DNA001-73-C-0119

Robert E. Tokheim
Donald R. Curran

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS
Stanford Research Institute pueA o
NWED Ne9QAXAC3Q6-
333 Ravenswood Avenue 73~9~

Menlo Park, California 94025 12. REPOAT DATE 13. NO. OF PAGES
11. CONTROLLING OFFICE NAME AND ADDRESS May 1974

/7C

15. SECURITY CLASS. (of this report)

UNCLASSIFIED
14. MONITORING AGENCY NAME & ADDRESS (if ditf. from Controlling Office)
Defense Nuclear Agency 15a. LASSIFICATION /DOWNGRADING
SCHEDULE

Washington, D,C, 20305

186.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from report) U

DISTRIBUTION STATEMENT (of this report)

DDC

Approved for public release; distribution unlimited. D ﬁ’\EﬂnﬂE
g ¥ W 'S A,
£{ APR 10 1978

Bl
D

18.

SUPPLEMENTARY NOTES
This work was sponsored by the Defense Nuclear Agency

under Subtask N99QAXAC306-03,

19.

KEY WORDS (Continue on reverse side if necesssry and identify by block number)

20.

ABSTRACT (Continue on reverse side if necessary snd identify by block numbaer)

Constitutive relations for porous materials were developed for wave
prop. gation calculations to simulate x-iradiation loading. The relations
were implemented in a FORTRAN IV subroutine,

The constitutive relations feature surfaces in energy-pressure-volume
space to describe reversible loading and heating at low stresses and
energies, compaction and fracture surfaces, and a multiphase equation-of-state

surface for congolidated material, All these surfaces provide unique relations

DD.%".1473 : PRICES, SIRIECT TO CHANGE

EDITION OF 1 NOV 65 IS OBSOLETE | SECURITY CLASSIFICATION OF THIS P/GE (When Data Entered)

=+ S




A THL A Wh 1 ner

19. KEY WORDS (Continued)

20 ABSTRACT (Continued)

between energy, pressure, and volume. In addition, rate-dependence in compac-
tion and fracture processes and deviator stresses are included.

The constitutive model includes versions of the Holt, Carroll-Holt,
Seaman-Linde, Herrman P-y, and Butcher P-o-r models., All these models have
been augmented and put into a single framework to include elastic behavior,
energy dependence, and deviator stress. The nucleati a-and-growth (NAG) model
for ductile fracture is included with modifications to permit elastic as well
as plastic volume change of the pores and an energy-dependent threshold for
fracture,

Solid behavior may be treated by the usual PUFF equation of state, the
Philco-Ford three-phase equation of state, or a new extended two-phase form,
which is convenient for fitting experimental data.

Methods for fitting data to the various models are described, especially
procedures for generating compaction surfaces and modulus functions from
Hugoniot and unloading data. A minimum set of tests required to characterize
a porous material is outlined, including impact and electron beam experiments:
on both solid and porous samples., The region of the Hugoniot near the initial
yield is most critical for x-ray simulations and should therefore be emphasized
in both impact and electron beam experiments.

DD. [\ 14735~ UNCLASSIFIED

20
EDITION OF 1 NOV 65 (S OBSOLETE “ SECURITY CLASSIFICATION CF THIS PAGE (When Data Entered)




May 1974
Final Report

COMPUTATIONAL REPRESENTATION OF CONSTITUTIVE RELATIONS
FOR POROUS MATERIAL

Authors: L. Seaman, R. Tokheim, D, Curran
Contributors: D, Erlich, D, Shockey, J. T. Rosenberg,
A, Lutze, R, Trottier, M. Ginsberg

Project Leader: M. Ginsberg
Project Supervisor: D. R. Curran

Prepared for:

Director
DEFENSE NUCLEAR AGENCY
Washington, D,C. 20305

Attn: Mr, Donald Kohler

Contract No, DNAOQ1-73-C-0119

SRI Project No., PYU=-2407

Approved by:

G. R, Abrahamson, Director

Poulter Laboratory D D C
C. J. Cook, Executive Director DE@EJEHE

Physical Sciences Division

MR 10 1915
UI]JE@%U-U‘E

{117




PREFACE

This report presents the theoretical results obtained during the
first part of a continuing theoretical and experimental effort to under-
stand the response of porous materials to rapid energy deposition, We
would like to acknowledge the assistance and support of the following
individuals:

D, Kohler - Contracting Officers Representative (DNA) [
. Elsberry - Project Monitor (AFWL) .
., Smith - Project Monitor (AFWL)

. Fisher (SAI)

. Picarelli (SAI)

. Stoddard (LASL)

. Skaggs (LASL)

The late J. Rosenthal (LASL)

H. Read (SSS)

L. Hearn (LMSC)

0. Burford (LMSC)

W, Isbell (LLL)

J, Shea (PI)

S. Heurlin and the crew of the Pulserad 738 (PI)

WL ™R

Important technical contributions to the prorsram were alro made by the
following SRI personnel: L. Hall, J, Busma, J. Hannigan, A, Urweider,
J. Dempster, P, De Carli, K. Mahrer, J, Yost, W, Wilkinson, C, Benson,
D, Walters, A, Bartlett, C, H., Anderson,

Professor George Duvall of Washington State University acted as
our consultant during the formative stages of the program and during
the construction of the PEST model.



CONTENTS

LIST OF ILLUSTRATIONS

I

II

I11

IV

" INTRODUCTION

Background
Current State of Knowledge of the Model

Measurements Required to Specify the Model for any Material

CONSTITUTIVE RELATIONS FOR POROUS MATERIALS

Approach
Features of the Model
Pressure in the Porous Material
Intermediate Surfaces
Rate-Independent Yield or Compaction Surface
Compaction Curve of Holt's Model
Compaction Curve of POREQST
Compaction Curve of Carroll-Holt Model
Compaction Curve of Hermann's P-y; Model
Rate-Dependent Compaction
Butcher's P-y-T Model
Holt's Model for Rate-Dependent Compaction
Linear Viscous Void Compaction
Discussion of Rate-Dependent Models
Rate-Independent Fracture Surface
Rate-Dependent Fracture
Summary of Model Changes

EQUATION OF STATE FOR SOLID MATERIALS

Extended Two-Phase Equation of State: ESA
Philco-Ford Equation of State

METHODS FOR DERIVING POROUS MODEL PARAMETERS FROM DATA

Data Sources
Construction of the Constitutive Relations
Thermal Expansion Functions
Thermal Strength Effect
Bulk Modulus
Compaction Curve
Rate Effects
Deviator Stress

Minimum Data Required for Characterizing Porous Materials

Page No,

11
19

24

25
27
32
33
43
44
48
51
53
55
56
59
61
63
64
64
66

68

69
75

80

80
82
84
84
86
86
89
91
91




Page No,

APPENDICES
A USER INFORMATION FOR PEST SUBROUT/NE 95
B INVERSE SOLUTION OF THE MIE-GRUNEISEN EQUATION OF STATE 139
c PHILCO-FORD EQUATION OF STATE 143
D EXTENDED TWO-PHASE EQUATION OF STATE:ESA 161
REFERENCES 166
169

DISTRIBUTION LIST




Figure

10

11

12
13

14

LIST OF ILLUSTRATIONS

Page No,

Radiation Response of Porous Material

Depiction of Energy-Pressure-Volume Space of the
Constitutive Relations for a Porous Mgterial

Depiction in Energy-Pressure-Volume Space of the
Constitutive Relations for a Porous Material with
Representative Heating, Loading, and Unloading Paths

Idealized Stress-Volume Paths Followed by a Poious
Material

Equation of State Surface for Uranium in Pressure-
Volume-Energy for Several Initial Porosities

Locus of States Caused by Heating Porous Ms‘erial
Without Expansion

Assumed Form of Actual Isoenergetic Loading Curves
Compared with Idealized Form for the Model

Pressure-Volume Paths for a Porous Material

Pressure-Volume Path Computed in PEST for Loading

with POREQST and Butcher P-y-T Models, Elastic
Unloading, Constant Strength in Tension, Ffagmentation,
and Recompression with POREQST and Butcher's Model.
Data are for Porous Tungsten,

Pressure-Volume Path Computed ir PEST for Loading with
PORHOLT Model, Elastic Unloading, Carroll-Holt Model in
Tension, and Recompression with PORHOLT Model to
Consolidation, Data are for Porous Tungsten,

Constitutive Relations of a Porous Material, Emphasizing
the Intermediate Surface for Reversible Loading and
Heating

Thermal Strength Reduction Function for Effective Moduli

Compaction Curve of POREQST Model Divided into Three
Parabolic Segments

Pressure-Volume Diagram for Porous Material Showing
Static Elastic, Dynamic Compression Paths

12

14

15

17

18

21

26
28

30

31

35

37

49

58




15

16

17

18

19

A-1
A-2
A-3
A-4
A-5

A-6

A=7

Pressure-Volume Diagram Showing Phases and Phase
Boundaries of the Philco-Ford Equation of State

Variation of Strength with Temperature for 1100
Aluminum: Examples of Thermal Strength Reduction
Functions

Variation of Bulk Modulus with Porosity and
Internal Energy

Hugoniot Data Plotted on the Zero-Energy Reference
Plane

Rate-Dependent Pressure-Volume Paths Generated with
the Holt Model at Several Loading Rates

Flow Chart of HSTRESS, Stress-Switching Routine
Sample Input for PEST Subroutine

Flow Chart foar PEST Subroutine

Input Deck for Test Case: Distended Tungsten Impact

Initial Layout of Finite Ditference Grid for
Distended Tungsten Impact Cslculation

Stresses, Locations, and Densities at each Finite
Difference Cell After 120 Time Increments

Portion of the Historical Listing of Stress at the
Impact Interface (S23) and at Cells 34, 37, 41, 45,
50, and 56

Computed Stress Histories at Several Locations in
the Distended Tungsten of the Test Case

Simplified Flow Chart for EQSTPF Subroutine

76

85

87

88

20

96
104
111
118

119

121

122

123
146



NOMENCLATURE LIST

The quantities listed here appear in the body of the report.

Separate nomenclature 1ists appear in the Appendices.

A U - 6S, Helmholtz function, erg/g
A ....A3 Constants given in Eq., 103, units of Ao are erg/g,
others are dyn/cm
a Constant in the series expansion for « in Holt's model
a R Constants in Eqs., 104, 105, dyn/cmz(cma/g)4
b Constant in the series expansion for ¢ in Holt's model, cma/g
b ,...b Constants in an equation of state for expanded material,
3 erg/g (cms/g)1 for bi
(o Bulk modulus of solid, dyn/cm2 or sound speed, cm/sec
Cp Specific heat, erg/g/oc
Cv Specific heat at constant volume, erg/g/oc
D 2nd coefficient in series expansion for Hugoniot pressure
as a function of strain i, dyn/cm
E Internal energy, erg/g
Ec Internal energy at the critical point, erg/g
EH Energy on the Hugoniot, erg/g
Ez Internal energy of liquid material, erg/g
EZo Internal energy at the triple point, erg/g
EM Internal energy at melting, erg/g
Eso Internal energy in the solid at the energy of melting
and at zero pressure, erg/g
Ev Internal energy of the vapor, erg/g
Eo Internal energy of ideal gas at zero teugerature, erg/g
FL'FZ Coefficients in a series expansion for a nonlinear energy effect
f(E) Th.srmal strength reduction function
G Isoenergetic shear modulus of porous material, dyn/cm2
GI Isothermal shear modulus of solid, dyn/cm2
GpI Isothermal shear modulus of porous material, dyn/cm2
g Isoenergetic shear modulus st zero energy, dyn/cm2
go,gl Constants in an equation of state for expanded material,

dimensionless and cm“/g




x =

ko’kl’kz

W e 2 =

='U ='U o’d
-

v o o
[ ]
(a4

[ad
=

O N‘UQ’U

Constants in an equation of state for expanded material
g/erg and cma/erg

2
isoenergetic bulk modulus of porous material, dyn/cm

Isothermal bulk modulus of solid, dyn/ca2

Isoenergetic bulk moduli on the 1th

dyn/cm2

intermediate surface,

Isothermal bulk modulus of porous material, dyn/cm2
Bulk modulus of solid o
Initial bulk modulus of porous material, dyn/cm2

Bulk ngdulun of porous material on the zero energy plane,
dyn/cm

Constants in the Philco-Ford equation of state

(K /Kb- do)/(a - 1), a constant used in determining
the bulk modulus of the porous material

Number of voids, nunber/cm3

Number of voids greater than a given radius, number/cm3
Nucleation rate constant

Pressure, dyn/cn2

Variation of P~V relation from a straight line at the
center of the line for a parabolic segment of the
POREQST model

2
Consolidation pressure at zero energy, dyn/cm , or
pressure at critical point, dyn/cm

Yield pressure in Holt's model, dyn/cm2

Pressure on the Hugoniot, dyn/cm2

Parameter governing sensitivity to nucleation of voids, dyn/cn2
Pressure in solid matcrial, dyn/cm2

Threshold pressure, dyn/cm2

Threshold pressure in the solid, dyn/cm2

Yield pressure in Herrmann's model, dyn/cm2

Pressure at zero energy, dyn/cm2

2
Acceleration term in the analysis of Carroll, dyn/cm
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Void radius, cm or factor given in Eq, 100, dyn/cnz,
or the gas constant, erg/g/ox

Nucleation void size distribution parameter, cm

3rd coefficient in series expansion for Hugoniot pressure
as a function of strain u, dyn/cm”, or, entropy, erg/g/oc

Temperature °K

Temperature at the critical point, °K
1+ rosoE/Ks, temperature factor
Temperature of melting, °K

Time

Internal energy, erg/g

Specific volume, cm3/g

Specific volume at criticallpoint, cmalg
Specific volume of liquid material, cms/g
Specific volume of solid material, cma/g
Initial specific volume of solid

3
Specific ¥olume of void, cm /g, or specific volume of
vapor, cm /g

Elastic change in void volume
Plastic change in void volume
Vv/V, relative void volume
Nucleated void volume

P V /RT , nonideal compressibility factor at the
critical point




Distension ratio

pso/p, an approximation to the distension ratio

Material constants used in the Philco-Ford equation of state
D’o/oc, value of o’ at consolidation

Distension ratio at yield in Holt's model

Distension ratio on 1th intermediate surface

Distension ratio of the threshold pressure

Volumetric thermal expansion coefficient, 1/°C
Distension at the yield poiﬁt in Herrmann's model
Initial distension ratio

Grlineisen ratio

Coefficients in a series expansion for Grlineisen's ratio
2Y/(3K'), yield parameter of the Carroll-Holt model

Small factor used in Carroll-Holt model to permit
consolidation at a finite pressure

2
Coefficient of viscosity, dyn-sec/cm
Temperature, oC
o /p =1, strain
s so 3
Density, g/cm
3
Density at a zero energy state in Holt's model, g/cm

3
Consolidation density at zero energy, g/cm , or density
at the critical point, g/cm3

Density at initial yield, g/cm3

Density of the liquid phase, g/cm3

Density of solid material, g/cm3

Initial density of solid, g/cm3

Density of solid at initial yield in the porous material, g/cn3
Solid density at the yield point in Herrmann's model, g/cm3
Density at yielding in Herrmann's model, g/cm3

Initial density of porous material, g/cm3

Reference density at zero gnergy and pressure on the 1th

intermediate surface, g/cm

2

Stress, dyn/cm
2
Deviator stress, dyn/cm

Time constant of Holt's and Butcher's models, sec



I INTRODUCTION

Porous materials are used as a protection against x-radiation because
of their ability to minimize the siiess generated by the radiation and to
attenuate that stress as it propagates. For accirate design of this
protection, wave propagation calculations are made to simulate the
radiation deposition, stress generation, propagation, and spallation

caused by stress waves, For such a calculation it is necessary to have

a constitutive relation (stress-strain-energy relation, or equation of state)

that describes the material's response to heating and to compressive and
tensile loading.

The obj8ctive of this report is to document a set of constitutive
relations that provide for:

e Elastic and plastic compaction loading with rate dependence

¢ Heating or cooling that can occur simultaneously with loading

e Unloading and rate-dependent fracture

@ Melting and vaporization, with explicit treatment of solid,
liquid, vapor, and mixed phases.

Accompanying these relations is a user's manual that includes a derivation
of the equations for the model and procedures for using it in Lagrangian
wave propagation computer programs.

For calculations, the computational model must be fitted to data
available on the material of interest. A description is given of the
methods used for performing this fit, especially the judgmental factors
involved.

The model or set of constitutive relations derived here are developed
from the same physical basis as that derived earlier by Seaman and Linde.
The material response is determined both by the solid material behavior
and by th2 behavior associated with its porosity. Onto this basic frame-
work of the Seaman and Linde model has been added a family of compaction

curves suggested by other investigators, rate-dependent compaction, ductile



fracture (rate-dependent), a multiphase equation of state for the continuous
material, and several deviator stress models. Specifically the following
models are included:
Compaction surface
POREQST (Seaman and Linde)1
Holt et al.2
Carroll-Holts'4

5,6

Herrmann's P-y
Rate-dependent compaction
Holt et al.2
Butcher p-a-r7
Linear viscous
Fracture
Constant strength
NAG ductile fracture8
Solid equation of state
Mie-Grilneisen and PUFF expansion9
Philco-Ford10
ESA extended two-phase equation of state
Deviator stress
Beryllium rate-dependent, Bauchinger model of Read11
Bauchinger model12
Standard anelastic model13
The constitutive relations for porous material are derived in Chapter II
and incorporated into subroutines in Appendices A and B. Chapter III
describes the multiphase equations of state for continuous material; the
new subroutines are given in Appendices C and D. The needed background
for deciding which data to select and for fitting that data to the model

is given in Chapter 1V,

10



Background

To be adequate, the porous material model must describe behavior
under radiation loading, Therefore we examine first the range of
behavior expected.

Radiation heating of porous materials can cause melting and vapori-
zation, shock wave vropagation, and spallation., Some of these phenomena
are illustrated in Figure 1, Radiation from the left falls on a plate (a
thin slice of which is shown), Following deposition the front surface
material is in a compressed but expanding vapor state, deeper material is
molten, and at greater depths the particles are only warmed. The 'absorbed
energy' plot shows in a conceptual way the diminution of absorbed radiant
energy with depth, Corresponding to this cnergy, stress arises throughout
the plate., In the "vapor" portion the material is heated rapidly during
deposition, expands and fills the pores. Continued heating following elimination
of the pores causes high thermal stresses to occur, which may reach the
megabar region. In the molten region the thermal expansion is smaller, so
following deposition the stress is nearly zero. Small thermal stresses are
reached by the end of deposition in the region that consists of solid particles.

Wave propagation becomes the dominant feature as the stresses in the
high-stress areas are relieved. The vapor expands rapidly, compressing the
molten mist and transmitting a compressive wave, which propagates to the
right through the mist and into the region of solid particles, The expansion
of the left (free) boundary of the vapor causes a rarefaction wave to travel
through the vapor to the right, following the compressive wave. As the
rarefaction wave traverses the liquid, it produces tensile stresses, spalls
the 1iquid, and continues into the solid particles, usually causing hot
spall to some depth. This rarefaction continues moving to the right at
reduced amplitude, Meanwhile the compressive wave reaches the rear surface
of the plate and reflects as a rarefaction wave, which propagates to the
left, At some point near the rear surface, this second rarefaction meets
the rarefaction moving to the right, and the tension produced may cause

fracture damage in the plate (cold spall).
11
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In Figure 1 the inserted stress-volume plots show the behavior at
selected points in the target. The material at the surface is heated
at constant volume and expands isentropically. The material somewhat
below the surface is heated and then compressed further by a compressive
wave until the ensuing rarefaction unloads it isentropically. At greater
depths, the initial heating is small and the compressive wave dominates.
The rarefactions then take the material into tension.

To examine in more detail the processes involved in these heating
and loading processes we divide the model into three parts:

(1) A pressure-volume-energy relation for solid material
under thermodynamic equilibrium conditions, called the
"equation-of-state surface for solid" in Figure 2,

(2) A pressure-volume-energy relation for porous material
under equilibrium conditions, termed ihe 'yield surface
for porous materials' in Figure 2.

(3) Elastic-plastic behavior, viscous behavior, fracturing,
Some of these processes are rate-dependent.

All three aspects of the constitutive model are exercised to follow the
behavior shown in Figure 1. To indicate how the first two portions of

the model participate, we have shown the paths followed by the material

at several depths on the energy-pressure-volume surface of Figure 3.

Near the front (irradiated) surface (Path A), a large amount of energy

is deposited at nearly constant volume causing the state point to traverse
the yleld surface, then through porous liquid and dense vapor states,
Finally a compression wave drives the pressure to the peak volume. The
unloading occurs along an isentrope, In the figure the isentrope shows

a rapid unloading characteristic of a solid or molten material. With a
more intense radiation, the state point trajectory would go far to the
right before reaching low pressures, and the final state of the material
would he a vapor. At a greater depth (Path C) there is slight initial
heating at constant volume as the state point travels over the yield surface,
followed by a further loading from the compressive wave coming back from
the front surface (this wave is caused by the high stresses at the front

surface). Unloading then follows an isentrope.
13
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Thus the response of material at all depths is described by the constitutive
relations, The slopes of the constant-volume loading lines in the P=E plane
are given by the Grilneisen function. Attenuation and hysteresis are given
by the stress-volume-energy paths projected onto the P-V plane. The
final states reached indicate the expected phase of the material.

In contrast to radiation deposition, impact in porous materials
is solely a wave propagation process, although significant heating may
occur during compression. For low stresses the compaction and unloading
paths resemble those showu in Figure 4, On loading the behavior is
initially elastic., At higher stresses, gross yielding and irrecoverable
compaction occur. At stresses of several times the initial yield, the voids
are eliminated and the behavior is like that of a solid. 1Initial unloading
usually follows essentially elastic paths, so the original specific volume
is not recovered. The Hugoniot for the porous material is also shown in
Figure 4. The Hugoniot of the porous material is to the right of the
Hugoniot for solid material, illustrating that shock waves in porous
material induce more heating than the same shocks in solids. This heating
effect 1s explored quantitatively in Figure 5, which was constructed from
uranium equation-of-state data.l4 In Figure 5, the low stress region
has been comple tely omitted; the calculations were made on the assumption
of zero yield strength. The figure shows Hugoniots for several initial
porosities (n = 0.0 to 0.667) and for impacts up to 600 kbar. Several
isentropes are also shown (all the Hugoniots and isentropes are approximated
to lie on a single surface). For uranium the melt energy is about
2.3 x 109 erg/g and sublimation is at 2.0 x 1010 erg/g. Hence, internal
energies equivalent to the sublimation energy can be reached by impacting
very porous samples. Similar results can be expected for many other porous

materials.

16
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The third part of the constitucive model for porous materials
contains all the nonhydrostatic and nonequilibrium parts. Here are the
elastic-plastic or yield phenomena, the rate-dependence associated with
yielding, the rate-dependence issociated with pore collapse, and time-
dependent ductile and brittle fracture. The rate-dependence associated

with phase changes would also be included here.

Current State of Knowledge of the Mdel

The pressure-volume-energy relation for solids i1s well-known mainly
from impacts. Thus the known states lie near the Hugoniot curve shown
in Figure 2, Recent progress has been made in developing three-phase
(solid, liquid, and gas) equations of state for metals through the work
of Royce}5 Thompson,ls, Goodwin et al.,10 and Naumann.17 Since all of
these are now based on static thermodynamic data, no effort is made to
handle the rate effects nssociated with changing phases. Zel'dov:lch18
states that the equilibrium surface(such as that described by these four
equavions of state) is not followed in a shock or rarefaction wave
because there is no time for the phase change to occur. Goodwin et a1..10
make it plain that there is no satisfactory data in the 1liquid range,

even for metals., Thus we conclude that:

e The solid behavior near the Hugoniot is well known
for many materials and can be derived from impact
data., The common equation-of-state relations adequately
describe this solid behavior,

e The liquid states are essentially unexplored experimentally.

e The vapor and mixed liquid=-vapor states for metals have
been studied experimentally and theoretically under static
conditions. The results give some guidance toward constructing
dynamic models, but cannot be relied on without dynamic experimental
verification,

The second portion of the constitutive model, the pressure relation

for porous material, is probably better understood than the first portion.
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The framework described in our model several years ago has gradually been
verified experimentally and theoretically. With the recent results of
Road}g we now know that the Grlineisen ratio for ductile porous material
containing voids is related to the Grlineisen ratio for solid material in
the manner given in our porous model. Many experiments have confirmed that
the pressure-energy relation for a porous material has the form given by
our model (shown as the line V2-A-B-C-D in Figure 6). However, some
experimental evidence suggests that a lower Grlineisen ratio should be
used for some materials. We suspect this discrepancy is caused by pore
shape and inclusions. Some experimental work has been done to determine
the viriation of yield strength and modulus as a function of internal
energy. Unfortunately only a few materials have been studied so general
conclusions cannot yet be reached. These variations are important
features of the model,

Considerable effort has besn expended in understanding the third
portion of the constitutive model: nonhydrostatic and nonequilibrium
phenomena, We are now aware of rate-dependent yield phenomena, Bauschinger
effects, phase changes, rates of pore collapse, and the rate phenomena
associated with fracture, Many of these studies have led to an under-
standing of these phenomena in a large class of materials, although specific
data are available for very few materials. Thus, we now realize that we
must expect those effects in all materials and have analytical models
for these effects.

In a recent parameter study Buxton20 confirmed the above conclusions
for porous beryllium. He found that each portion of the constitutive
model discussed above may have a dominant effect on the stress and impulse
generation.

Measurements Required to Specify the Model for any Material

-With so much information required to determine the model parameters

for each material, it is clear that a fairly large number of experiments
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are required. Where possible, each parameter should be derived from
experimental results that depend uniquely on that parameter. From plate
impact experiments, for example, the impedance, wave velocity, and unloading
moduli cun be derived directly. But in electron beam experiments, Grineisen's
ratio, modulus, and attenuation all have some influence so that none is

determined uniquely.

The behavior of the solid is determined by impact and electron beam experi-
ments on the solid and also on porous material. The impacts provide loading

and unloading data on and near the Hugoniot and also at higher energy states
*
as shown in Figures 3 and 5. Because the Lagrangian analysis can be used

to reduce the data, much of the pressure-volume-energy surface near solid
density can be explored with impacts. The impacts determine the moduli
and give some indication of Grlineisen's ratio. Electron beam experiments
are performed to define states of larger specific volume than those reached
in impacts and to determine the Griineisen's ratio throughout the range of
interest. Because of the more complex loading path (such as paths A, B,
or C in Figure 3) taken in the electron beam experiments, the equation-
of-state surface must be known fairly well before the e-beam data can be
reduced. With a combination of impacts and e-beam experiments in the same
region of the surface, we feel that a valid reduction of the data can be
made . .
Porous material is studied in a manner similar to that used for solids,
Impacts at several peak stress levels and initial internal energies are
used to map the "yield su-face" of Figure 2 and the unloading behavior.
Then e-beam experiments are conducted at low energies so that little of
the material melts. The e-beam data are reduced with the aid of the

constitutive relations based on the impacts. In this way, the e-beam

*
Lagrangian analysis is a mcthod for transforming stress or particle
velocity records from impact experiments to obtain stress-volume-energy
paths followed by the material during the impact.
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measurements are used to provide an effective Gruneisen's ratio and need

not explain the wave propagation phenomena. These experiments in the

porous material lead to determinations of the bauschinger effect, the
rate-dependence of yielding,. the pore collapse process, fracturing, and

the variation of yield and moduli with internal energy. Because of the
variety of effects, special experiments must be conducted with different
target thicknesses, different initial temperatures, and different
instrumentation., Some targets must be sectioned to examine internal effects.

The foregoing experiments are all dynamic. However, some auxiliary

data may be obtained from other kinds of experiments. A crush-up curve
and unloading moduli may also be obtained statically, although these may
not be appropriate for dynamic conditions. It is necessary to verify

static data by comparison with wave propagation data before using them

in dynamic calculations,
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II  CONSTITUTIVE RELIATIONS FOR POROUS MATERIALS

This study is directed toward deriving a themodynamic description
of the stress, energy, and volume states reached by porous material during
shock wave loading. Such a description is usually termed the constitu-
tive relations. For convenience the constitutive relations are separated

into components by dividing the stress into pressure and deviatoric stress.

P(E, V) (1)

la~
1

(2)

a
"
Q
=
=
|
Q
'
0

where
¢ is the stress in the direetion of wave propsgation
P, o' are pressure and deviator stress

E, V are internal energy and specific volume,
The deviatoric component is associated with yielding and mechanical rate
effects; it is important only while the material is solid. The pressure
portion pruvides the major part (f the stress for solid behavior and all
the stress for liquid and vapor states., As an aid in visualizing the
P(E, V) function, it is often depicted as a surface, as shown in Figure 2,
Solid behavior is given by points near E = O on the left in the figure;

vaporized states are on the right.

If the material is initially porous, a combination of compressive
loading and heating will cause the pressure to !ie on the "yield surface
for porous material,’ shown in Figure 2, Thus the themmodynamic behavior
of the porous material is an augmentation of the behavior of the solid.
In porous materials the states reached in shock wave experiments depend
on the loading history and rate of loading and not simply on the thermo-

dynamic state variables.
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This chapter describes our approach to constructing a model: our
view of how porous material actually behaves, We outline the features
included in the present computational model and give detailed derivation

of the constitutive relations included in the model.

Approach

The energy-absorbing and stress-generating mechanisms in porous
materials are assumed here to be related to the behavior of the solid
particles. The computational model is constructed by combining the
behavior of the solid material with the effects associated with the
structure of the porous material, No sypecial treatment is required to
handle stress-generation under rapid heating. At low stresses the porous
material responds elastically but with a lower modulus than the solid
particles., At higher stresses the structure yields, allowing the collapse
of some pores. This structural yield is associated with the yield strength

of the solid material and of the interparticle bondstrengths,

A family of assumed isoenergetic loading curves are shown in Figure 7
together with idealizations of this path, There is assumed to be a var-
iation of yield and bulk modulus with energy, and a gradual transition
from elastic to fully plastic behavior. These curves are represented in
the model by paths with a linear elastic loading up to a sharp yield,

After yielding, all paths at the same energy coincide in the model,

Deviator stresses are always present in quasi-static, one-dimensional
strain experiments on porous materials (that is, stresses are not equal
in three orthogonal directions). Such measurements usually show very com-
plex relations between deviator stress and strain, relations indicative

of work-hardening, rate-dependence, and Bauschinger effects,

Fracture in porous material has been studied very little, but it is
assumed that fracture occurs, as in solids, by the growth of cracks or

voids, The strength of porous materials is smaller than the corresponding
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solids because theie are so many large inherent flaws, Under sustained
tensile loading, the porous material should come apart and produce some
fragments, On recompaction the fragments will not necessarily follow

the same loading path they did on initial compression,

Features of the Mode!

The model developed is intended to describe the thermodynamic
behavior of porous ceramics, metals, and plastics. It should also be
applicable to geologic materials., It is intended to readily fit data
available in various forms so that little recasting of data is required.
The flexibility required to treat many kinde of material with data in
many forms is obtained by providing several options for each of the

following portions of the model:
® Solid constitutive relations
® Yield surface for porous material
® Rate effects in the porous material
® Deviator stress,

The solid behavior is treated by a combination of the Mie-Grlineisen
and PUFF expansion equations of state, the ESA extended equation of
state, or the Philco-Ford three-phase equation of state, The yield sur-
face for the porous material is provided by versions of the P-q model,s’6
the Carroll-Holt model,s'4 the POREQST model,1 and the Holt model.2 Rate-
dependent effects are treated by Butcher's7 or }[olt's2 models or by the
SRI void growth model.8 Deviator stress is handled by the usual elastic,

plastic, or work-hardening models, by several rate-dependent models, a

12 11
Bauschinger model, or by a special model for S200 beryllium,

The logic used for joining the components of the model is illustrated
in Figure 8, Here, possible loading and unloading paths are given for a

porous material, Initially, the loading is elastic; above the "initial
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yield" point, the loading continues elastically only for very rapid
loading, For quasi-static loading, the path follows the line on the
yield surface, For wave propagation, the path will depend on the loading
rate and will lie somewhere between the elastic and the static curves

(for example, the "dynamic" path). If unloading occurs, the path will

be on an "intermediate’ surface and the behavior will be elastic. Con-
tinued unloadirg will causc tension stresses, In tension there are also
three paths: elastic for instantaneous loading, static fracture threshold,
and between these, a dynamic path, During the compression phase, the path
may reach the solid curve, that is, the material may consolidate. The
foregoing paths concern only the pressure; the deviator stress follows a

similar set of paths,

The procedure used to perform the calculations and the switching
between options is illustrated in Figure 8, For porous material, the
calculations are first made on the assumption that the response is elastic,
that is, that the path lies on the "intermediate surface" defining revers-
ible loading and heating. Thoen the rate-independent compaction (or frac-
ture) pressure is calculated. If the elastic pressure exceeds the static,
the dynamic pressure is computed. In this way, the very complex model is

isolated into small, independent portions,

A sample of some capabilities of the model is shown in the computed
loading paths in Figures 9 and 10, The paths were constructed by computing
pressure with the subroutine for a sequence of increasing densities, fol-
lowed by a decreasing sequence and another increasing sequence, The com-
puted paths show rate-independent and rate-dependent loading, unloading,
rate-independent fracture, complete separation (in Figure 9) and recom-
pression to consolidation, Other possible paths would show various com~

binations of heating and loading.

29




L AP e

e B oaal
t.

-uaisbun] snosogd 10; aie eieQ

7300W S.HIHOLNE ANV 1SD3IHOJd HLIM NOISSIHdWOO3IH OGNV
‘NOILVLNIWOVHS ‘NOISNIL NI H19N3HIS LNVISNOD ‘ONIGVOTINN J1LSV13 'S1IA0W :-0-d

H3IHOLNE ANV 1S03HOd HLIM SNIGVO1 HO4 1S3d NI A31LNJANOD HLVd IWNTOA-3HNSSIHd 6 3HNOIY
BZ-LOWE-"IN
En.E — IWNT0A DN41D345
*i'0 £1'0 Lo Lo oo 800 20’0 oo a0'0 SO0 L]
— aL-
| SR : |
o
FLVLS TVILINI
— oz
s —{ o»

NOISSIHANOIIH ONY DNIOVOT TVILINI

0L = 4 SHIHILNG/43LS INIL
vonmusule;§ )y UORSAIRLCIY
o uLIDe: 3

uopsus L

uoms LoD

g BUPSOT) PHOS e e

™ uped LONISAWOD IEPUSEPUI-IEY ———
T e B

= N K
14

B/ uo 95°IZ = ¢
.Iﬂuﬂptn.._auﬂrzn.._.u..!n/__

| | | | | ] | 1 |

I
8
Q) — 3JWNSSIMJ

1
8

-

30



‘uaisbuni snosod s03 aie eleq

NOILVAIMOSNGD OL 130O0W LTOHHOd HLIM NOISSIHIWODIH ANV ‘NOISN3L NI 130O0W LTOH-TT0HHYD
‘ONIGVOTINN D:1SV13 “13G0W LT0HHOd HLIM ONIGVO1 HO4 1S3d NI QILNANOD HiVA 3WNTOA-IHNSS3IHd Ol 3HNODIS

BE-LOPEZ-vH
B/gwo — INNTIOA DI1D3ds
800 {00 900 SO0 oo
| [ 1 oi-
4 Q3aNVdxX3
0
ALVLS TVILINI /
l..l-...f
| - Hivd { oo
....:f INIONISONI-ILYH
40 NOILYOIOSNOD
— — ooz
P ]
m
a
[
D
m
— —| oot |
x
g
pog -7
il.—._
i Bunsany |04 LOS RO | o —{ 0¥
s + HLYd DINYNAQ
UOMmRChIOD d 40 NOLLYOIMOSNOD
Yty Bapeo] PHOS —— — 008
B T e —
] ] |

31



Pressure in the Porous Material

The stress in the solid particles of the porous material must vary
from zero at free surfaces to large values at contact points, For pres-
sure calculations we consider, however, only an average stress over all
the solid matter. if a cross section is cut through the porous material,
some of the cross section is void., The average stress or pressure on this
section is a function of the average stress in the solid and of the void

21
volume, Carroll and Holt have shown that

P = oP (3)
-]
where P is the average of three orthogonal stresses on the
porous material
Ps is the average pressure in the solid particles

o = V/Vs, the distension- ratio

\' is the gross specific volume

Vs is the average specific volume of the solid particles,

In the discussion of analytical models for porous materials, some
investigators have used the relative void volume, v, and others have

used the distension ratio, ¢ The relative void volume or porosity is

defined as
Vv VeV
s
vV = v (4)

v v

where Vv, Vs, and V are the specific volumes of void and solid, and the

gross specific volume, The distension ratio is defined as

©
n

o= (5)

<|<
1
|

8
where p and ps are gross density and average density of the solid particles.

Through Eqs. (4) and (5), relations can be found between vy and o



(6)

and a= (7)

The pressure in the solid material below melting, ps, is assumed to
be given by the Mie-Grlineisen equation of state with the Hugoniot as the

reference function,

g
1}

. PH + IP(E - EH)

Cu+ o+ 5y + P(E - B (8)

where u = ps/pso -1

PH and EH are pressure and internal energy at the density p on
the Hugoniot
I' is the Grlineisen ratio

C, D, S are constants,

Intermediate Surfaces

The model must provide for elastically loading, unloading, or heating
material with arbitrary porosity. For this purpose we define an "inter-
mediate surface" in pressure-energy-volume space, This warped surface
contains the locus of points that can be reached from a given point by
an elastic (reversible) loading or heating process, If yielding occurs,
the state point leaves the first intermediate surface and proceeds to
another, This behavior is analogous to the usual elastic-plastic response
in which unloading after yielding determines a new elastic patbh, When
energy must be considered, as in our case, a new surface instead of a path
is determined, Thus there are an infinite number of nonintersecting
intermediate surfaces that can be defined between the initial porous den-

sity and the solid density.,
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The intermediate surface concept is introduced here from a physical
point of view, and derived mathematically, and then the thermodynamic

requirements for it are discussed,

One intermediate surface ABC is shown in Figure 11 together with a
compaction surface YBGFCH, fracture surface DFHE, and consolidation lines
GF and DF, To explore the nature of the intermediate surface, consider
a series of processes that must be represented on the surface, For
example, a zero-pressure expansion under heating must define a line on
the surface. Along th{s zero-pressure-expansion line, shown as JC on
Figure 11, the specific volume must increase in proportion to the change
in energy. An elastic loading or unloading process defines a line such
as RL on the intermediate suvface in Figure 11, The slope of this line
in the pressure-volume plane is a bulk modulus, If radiant energy is
deposited rapidly in the material such that no volume change can occur,
pressure rises immediately because of the restraint of the surrounding
material, Such a line is RP, If the energy increase is small enough so
that only elastic response occurs, the response can be decomposed into
thermal expansion at zero stress (RQ) and a recompression at constant
energy to the initial density (QP). Both expansion and recompression
paths must lie on the intermediate surface and so must the resultant path,
which occurs at constant volume, Together these three paths must define
the nature of the intermediate surface, Slopes such as the adiabatic
loading path RL in Figure 11 are represented by an effective bulk modulus,
while constant-volume slopes such as RP provide the effective Griineisen
ratio, Since the bulk moduli of the material vary with internal energy,
the surface is not plane, but warped. In the following paragraphs the
bulk moduli for loading processes and the thermal expansion behavior are
derived., Then these two processes are combined to form an expression for
pressure associated with any loading or heating process on an intermediate

surface.
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An isoenergetic bulk modulus is derived for use in our calculations,

Along an isoenergetic path, the pressure is

P = K(E— -1) (9)
pO
where K is the isoenergetic modulus

p 1s the density at zero pressure on this path,
o

It is assumed that K is a function only of density and energy and

that these functional dependencies are separable,

K = k(p)f(E) (10)

The functions of k(p) and f(E) are derived separately., The energy depen-
dence f(E) of the effective modulus is described by two parabolas for the
model. The form of f(E) is shown in Figure 12, The parabolas usually

provide enough flexibility to fit the meager data available.

The form of k(p), the porosity dependence of bulk modulus, is derived
to meet three criteria:

® The modulus variation should be like that obtained from the
elastic analysis of porous material.

¢ The value of the modulus at the initial density must fit data
on the material, and the modulus at consolidation should
approximate the isoenergetic modulus of the solid.

® The bulk sound speed should never exceed the bulk sound speed
of the solid, Thus, because k/p 1s an approximation to the
square of the bulk sound speed, K/p should always h~ less than
K .
s/pso
The theoretical variation of modulus with porosity is obtained from the

22 23
works of MacKenzie and Warren on material with noninteracting spher-

ical pores. For linear elastic loading with small deformations, they
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derived the following relations for the effective isothermal bulk moduli

from small-deflection theory.

KI
K = 11
pl 3K (L)

I
ai + 4GI (a1 - 1)

where KI and GI are the isothermal bulk and shear moduli of the solid

ai is the distension ratio on the ith intermediate surface.

Equation (11) may greatly overestimate the effective stiffness if the pores
are nonspherical or there is intergranular sliding. Therefore the theoret-
ical form is modified to permit the specification of an initial bulk modu-

lus K . Then the dependence of bulk modulus on distension ratio is
o

Ks Ks
k(p) = = (12)
o -1 =
+Ks-a 4 °'1+ L(o¢1 1
ai K ofox -1
o o

where 05 = pso/po is the initial distension ratio of the unheated material

Ks is the adiabatic bulk modulus of the solid at initial density
Ks/xo - O% |
. = -—————e _ a constant,
a -1
o
Here we have used the adiabatic modulus KS instead of the isoenergetic
modulus because it corresponds to the C in the Hugoniot relation in Eq. (8)

for the solid,

To keep the bulk sound speed from exceeding that of the solid, we also

require that

K <K /a (13)

o s o
Thus the behavior of k(p) as determined by Eqs. (12) and (13) is similar to
that determined by Eq. (11), but now k(p) also depends on the ratio of the
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initial modulus of the porous material to the modulus of the solid mate-

rial,

During elastic loading there will be a small change in distension,
a change not noticed in MacKenzie's small-deflection analysis, If the
current distension were used in Eq. (12), a nonlinear loading would occur,
This nonlinearity is eliminated by defining ai as the distension at zero

pressure and energy on the ith intermediate surface, that is

o =9p /p1 (14)

i SO 0
where Peo is the solid density and pz is the porous density, both
defined at zero pressure and energy.

ai is equal to a on the intermediate surface passing through
the initial state of the porous material.

The isoenergetic shear modulus also is reduced for porosity and
internal energy. As for the bulk modulus, the effective shear modulus is

presumed to be a product of functions of p and E,

= g(p) £(E) (15)

The same thermal strength reduction function is used as for the bulk
modulus, According to MacKenzie's analysis, the isothermal shear modulus

varies linearly with density

10 3KI + 4G
G _=G - 5( Sy -—————*——]
PI [1 y ) 9KI + 8G (16)

As with the bulk modulus, we may wish to define an initial shear modulus,
Go. This is achieved by writing an expression for g(p) that is linear

in density as is G but permits an arbitrary specification of Go' Then

pI
G 1- 1/

() =G 1-’1-—°>——ll an
glp) = s[ \ G_ 1-1/0:0_1

where GI has been replaced by the adiabatic modulus Gs.
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The intermediate surface also represents state points reachable by
heating or cooling. When a solid is heated at zero pressure, the mate-
rial expands uniformly in all directions, The specific volume increases
by an amount proportional to the initial specific volume, the thermal
expansion coefficient, and the temperature change. A porous material
expands under heating in much the same way; even the voids retain their
shape and simply enlarge, For a porous material at an arbitrary point at
zero pressure, such as point J in Figure 11, the expansion path is along

the curve JC defined by

P=0

<
1t

VJ(l + G%AO) (18)

where at is the volumetric thermal expansion coetficient, a constant

A@ is the change in temperature

VJ is the specific volume at point J,.

This expression is valid for VJ =V , the initial specific volume, and
0

also for VJ = VSO, the initial solid volume.

The temperature is eliminated from Eq. (18) by introducing a constant
specific heat, Cp, and the Grlineisen ratio, [ = Ksat/(pS Cp). Then the
o]
volumetric expansion along the zero pressure line JC in the intermediate

surface of Figure 11 is

E
1= 1V Y Tk T (19)
pO

i
where po is the reference density 2t J on the ith intermediate surface

i
pU is the density at point U on the line JC,
TF is a thermal expansion factor,
When the equation for the zero pressure line is solved from the Mie-

Grineisen Eq. (8), the following expansion is obtained:

40



2
-1- — 1——[1 + rpSOE l(FPSOE) .o o]
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Thus, to a first approximation in FpSOE/C (and with K = C), the zero
s
pressure line follows the same expression in the solid and porous mate=-

rials,

The pressure at an arbitrary point P on the intermediate surface in
Figure 11 is obtained by expanding from J to U using Eq. (19) and then
loading on an isoenergetic path to P using Eq. (9). The isoenergetic

loading follows the relation:

=k |- = g
P= Ki 1 1 = kif(E) EI 1 (21)
p
v v

By inserting Eq. (19) into Eq. (21), we obtain the complete expres-

sion for pressure:

FpsoE
=, A\l 1 - 1 22
P = k £(E %{( - ) (22)

o

Eq. (22) provides a unique expression for P(p,E), independent of loading

path or direction,

The foregoing intermediate surface expressions provide a unique
relationship between eunergy, pressure and volume, This uniqueness (path-
independence) is one requirement of equilibrium thermodynamics. The
expressions above impose no requirements on temperature and entropy and
hence they may not meet all the thermodynamic requirements: this question

is examined below.
For thermodynamic completeness, an equation of state must provide a

unique relationship between energy, volume, and entropy

E = E(V,8) (23)
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Then, with the aid of the energvy balance relation

OF 3E
dE = Tds - PdV = (-] d5 + (=) av, (24)
v S

the other basic thermodynamic quantities can be determined, that is

OE
A
OE
P=- (SV> (26)
S

Thus the uniqueness requirement is that all five quantities - E, P, S, T,

V - be uniquely given at each point on the equation-of-state surface.
While the present resu!/ts uniquely define E, P, and V, the

temperature and entropy are path-dependent, This path-dependence can be

illustrated with the aid of the following equations for temperature and

entropy
1
dT = E— (dE + PdV + thdP) (27)
P
and TdS = dE + PdV (28)

For example, examine alternate paths such as heating and then loading

(path RQP in Figure 11), or loading followed by heating (RLP in Figure 11).

Different temperatures and entropies are obtained at the final point (point P),
We expect to examine this problem of thermodynamic consistency further

and to propose a solution if the discrepancies are significant,
In preparation for each elastic calculation with Eq., (22), it is

ticcessary to locate the appropriate intermediate surface. Since surface

is related to a particular value of oi, it is necessary to solve Eq. (22)

i
only for Oo' using the values of P, E, o from the previous state point
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calculation, The inversion of Eq. (22) with Eq, (12) substituted for k1

i
leads to a linear result for po.

K f(E)plr_=-Pp (1 + L)
[} £ SO

o st(E) - PL

Rate-Independent Yield or Compaction Surface

When loading or heating occurs in a porous material, the initial
response is elastic, But eventually the stress reaches a level that
causes a general yielding of the assemblage and a consequent collapse
of the voids, This yielding may occur for many combinations of density
and internal energy so that the yield points form a surface in P-V=-E space.
If loading or heating continues, it is assumed that the state point moves
across this surface, Thus, we assume that the yield surface is unique and
can be reached by arbitrary combinations of heating and loading (cooling
and unloading cannot be included). This uniqueness has been verified for

static loadings but has never been tested by heating.

The compaction surface is an upper bound on the static pressure
obtainable at a given density and internal energy. It also serves as a
_threshold level for rapid collapse of voids under dynamic loading, As
shown in Figure 11, the compaction surface joins the solid equation-of-
state surface along a consolidation line (FG) and ends at a zero pressure
line at the melt energy for the material (FCH). The compaction surface
also passes through zero along a line corresponding to the free expansion
of the material from its original density (line IH). The joint between
the :ompaction surface and any intermediate surface is represented by BC

in Figure 11,

A rate-independent compaction surface occurs in all the porous models
considered. In some cases one model may fit the material behavior better

than another., Usually several models are equally appropriate, but the
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data may have already been fitted to one of the models; in that case, the
model that matches the data should be used if it is available,

The compaction surfaces are defined by functions of the form

P (o,E) or P (o, E).
com com

To simplify the form of the surface, we assume that it is formed by
two independent processes: (1) isoenergetic compaction and thermal
¢xpansion and (2) thermal strength reduction, The Pcom(p,E) becomes a
product of two functions, each representing one of the processes:

P =p (p YI(E) (30)
com com ref

where pc (pref) is the crush curve defined in the E = O plane. The
0

variable pref is computed from the current values of p and E with the

aid of Eq. (19), thus accounting for the thermal expansion effect.

The same function of energy f(E) is used here as in the modulus

function, but this equivalence is not a requirement.

In the following subsections, several forms for p(pref)' the compac~-
tion curve, are given that are in common use and appear to represent the

experimental data, at least for some materials,

Compaction Curve of Holt's Model

The static compaction curve at E = O is defined by providing an
analytic relation between any two of the following three variables: the
distension ration q, specific volume, and pressure, Various functional

,6 7 2
Butcher, and Holt. Holt's formu-

forms have been given by Herrmann,
lation has the advantage that ¢ is given as a function of specific volume,
a known quantity; therefore no iteration is required. (Herrmann's and
Butcher's g's are functions of pressure,) However, in using a function

of volume, care must be taken to assume a reasonable form, The following

restrictions are suggested,
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e @ must go to 1,0 at consolidation, p = pc.

o o should be initially equal to pso/po' the ratio of
solid density to initial density.

® The pressure should increase monotonically with density.

® The initial slope of the P-V curve past the initial
yield value should be modeled,

e The consolidation should occur with the porous P=V
curve tangent to the solid curve (no discontinuity in
sound speed),
First, the expression of Holt was examined, but it did not meet the third
requirement--monotonically increasing pressure, After several attempts,

it was decided to use a second-order expansion in density and to meet

only th2 first four requirements, The expansion is written

2
/ [
Pee * a(p pe) + b(p pe) (31)

P'a
=l P (32)
where p is the density at initial yield
p is the density of the solid particles at initial yield

p is the density for a state of zero internal energy.
The constant a is derived from the slope of the static compaction curve

at the left of the point p' =P .

e
P =P ) ’
( P afs_"so da__P_)
e ap Y o
P
p‘d_ T o = pK 80 =p K so s (33)
(;dpe e dp o e s dp e s dp

Here Eqs. (3) and (5) have been used to replace ¢ and P, and the pres-

sure in the solid has been written as a function of density:
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P
P =K (.i - 1) (34)
] s\pP

S0
where Ks is the bulk modulus, When pS is replaced by its value from
Eq. (32), the differentiation is performed, and p' is set o pe, the

following is obtained

2
dP pe pse - pso pe
p :]_ =KS + > a
S8 e pse pso p
se
a kK
=P 4 =" (35)
T e 2
o
e
since
Ks pse - pso
P = — — (36)
e o p
e so
and P
se
0% = = (37)
pe

where Pe is the pressure in the porous material at p = pe

pse is the solid density at the same point,

Then the parameter a can be determined for prescribed values of the slope

at yield.
02 .
e dp
a=— —] - P 3
K Pe dp . (38)
s c

the constant b in Eq. 31 is determined by requiring that P, = pid Bp
C

at consolidation,
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S
b= — s, (39)
pc pe pc pe

The function thus defined for the static distension ratio has no extremum
betwecn po and O unless (d P/d pe) is negative (downward initial slope
of the P=V curve) or the initial slope greatly exceeds that required for
a linear P-p’ curve. The value of an "a" for an approximately linear
P-p' curve is
ae
a=——(pc-p ) (40)

- se
pC pe

This value of a is the largest value that would be used normally to fit

data.

The densities pe and pse are computed from the elastic relation on

the intermediate surface, Eq. (9), and the corresponding relation for the

solid:
P =P
P = O ¢
o]
Y
P =K(—Se->=aP (42)
se s\p ee
SO

where Pe and Pse are pressures at the elastic limit, and Ko is the stiff-
ness on the intermediate surface through the point p = Py Eq. (41) can

immediately be solved for pe

Pe
o]

From Eq. (3) the densities can be related to ae

p = @p (44)
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Compaction Curve of POREQST

The rate~independent compaction curve of Seaman and Linde1 was
constructed to be convenient for fitting experimental data. The compac-
tion curve 1is divided into a series of parabolic segments as shown in
Figure 13, The segments are specified by a series of densities: pl,
Pgsr eoe 95' where p1 = po and p5 is at the point of consolidation, Up
to four segments are permitted, Within each segment, the curve is defined
by the pressures at each end of the segment (P1 and P2 for the third seg-
ment of Figure 13)and by the variation AP, As shown in Figure 13, AP is
measured midway between the specific volumes at each end of the segment
and is the vertical distance from thé straight line to the parabola, With
this definition, the value of AP is negative in the third segment shown,

These quantities--densities and pressures--are readily determined from a

measured or estimated P=-V curve: these are the input data for the model,.

For the wave propagation calculations, the input data that define the
measured compaction curve are transformed to coefficients of a quadratic

series in specific volume. In temms of the input variables the parabolic

form is
V= W V=V )(V=V
P=P (P_ - P) -————1 4AP ( 1)( “1)
=5t e TN Vo r 2 (46)
Vv -V
( i+1 i)
where Vi and V1+1 are specific volumes at either end of the ith segment

2
and correspond to p1 and pi+1. By gathering terms in V and V , we can

rewrite Eq, (46) as
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2
P=P P V+P V 47
%t ted (20)

ai
p AAP p ]
where P =P 4+ i+l P2 - P -
ai 1 ¢ -p 1 »p -p
i+1 i i+l i
J
P, . .P p. +p,
P - 1104 [ P - ase (Ps * Py
Piv1 ~ Py Piv1 ~ Py
.2 =
4AP p P
P _ i+l
ci ( )2
Piv1 ~ Py

The quantities pai' P and PCi are computed in the code and stored for

bi’
use during the wave propagation computations,

With only three points to define each segment, the slopes of
the data may be poorly represented, The slopes of the parabolic segments

can be determined from Eq. (47).

P - P - 4AP
dP =
v v Y
dv V=V i+l i
i
P «P
2 1
dp =37 . (48)
v -
d VaV i+l i
P - P - 4AP
dp -
av v -V
V=V
i+l et 1

V=(V _+ V)2
where V = ( 14l 1)/
These equations should be used to verify that slopes of the data are being
fairly modeled by the parabolas, If necessary the slope representation
can be improved by using more segments or by repositioning the segment

boundaries.

50



The point of consolidation may be more readily specified as a
pressure Pc than a density. Therefore, the consolidation density may be
given as zero in the input; Then the P2 value for the last segment is
interpreted as Pc and used with the equation of state of the solid to
determine the consolidation density. The solid equation of state is

usually given in the Mie-Grlineisen form

2 3
P= (Cu+ Dy + Syl - £!)+ pl'E (49)

where C, D, S are coefficients of the Hugoniot

I' is Grlineisen's ratio

E is internal energy

b= p/pso =T
Eq. (49) is solved for p = p5, the consolidation density, with P = Pc
and E = 0, The solution for Py is described in Appendix B.

Compaction Curve of Carroll-Holt Model

3
The Carroll-Holt model is based on an analysis of the spher-
ically symmetric compaction of a single spherical void in rigid-plastic
material, The analysis led to the following relation between pressure

and distension ratio:

1
= 50)
& -|3P/2Y :
l1-e |38/ 2¢||

Carroll and Holt suggested that this result could be extended to elastic-
plastic material behavior through the use of Eqs. (3) and (5) and the

stress-strain relation for a solid. Then

__S=_<_-)=K(1-l) (51)
o s\o o

where ¢’ = pso/p.
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By eliminating o between Eqs, (50) and (51) Carroll and Holt derived an

expression relating P to p for elastic-plastic behavior,
Here Eqs, (50) and (51) are used to find an expression relating o to

the density (represented by o/ = p /p). The result is
SO

QI
R I

, + & 4n (1-§) (52)

where § 2Y
B sxs

The absolute value sign in Eq. (50) is accounted for by letting § be positive
for compression and negative in tension, With Eq. (52) complete consolidation
cannot occur although o approaches arbitrarily close to 1,0. To permit
consolidation, we introduce a small parameter ¢ into Eq. (52) in such a

way that oo = 1.0 for a finite consolidation pressure Pc. The new form is

then

2 ,+6zn(1+c-l) (53)
(63

[o

With ¢ = 1.0, Eq. (53) can be solved for the consolidation density oc and

for the value of o’ at consolidation.

p
1
= == =1-5sne (54)

SO C

2

0

Under the assumption of a constant bulk modulus, an expression for the
consolidation pressure Pc can be derived from Eqs, (54) and (34).
2Y

P ~ — yn€
e =3 /n (55)

For example, with ¢ = 0.0001, Pc/Y = 6,15,
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Equation (53) is solved for o by an iteration procedure, The
starting estimate for the iterations is based on ’ because y . ¢’/ except
very near consolidation, To avoid an estimate of ~ less than 1,0, the

following estimate is used

1 1
Q/l = (y' for = s 2 - =~
(04 (24
[
1 1 1

for — 2 -~ —
b R (l/aé - 1/o')/2 o' g né

From this first estimate a Newton-Raphson method is used to compute .

Compaction Curve of Herrmann's P-o Model

The most popular models for the compaction curve are those known
5
generally as the P-0 model, Here we use a quadratic relation between P and
6
o, Which is available in WONDY IV as:
Pc - P
= -DD{— 56
a=1+ (ay ) P (56)

P -
c y

where P , Gy are the pressure and distension at the yield point

Pc is the consolidation pressure,

In Eq, (56) y goes smoothly from ay at the initial yield to 1,0 at
consolidation, as required. Also the derivative dn/dP is zero at
consolidation so there is a smooth transition from porous to solid,
The only parameters to specify are therefore Pc and Py, quantities with
clear physical significance,

This model is treated somewhat differently from the preceding
three. To preserve the continuity at consolidation, we presume that
Eq. (56) is valid for all energy values up to melting. The yield and

consolidation pressures are interpreted as P f(E) and P f(E), that is,
y c
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to reduced values appropriate to the current internal energy. To eliminate
the iteration procedure normally required to solve Lq, (56), we substitute
densities for pressures in Eq, (56). This substitution in fact follows from

Eq. (56) under the approximations

p
p:x(i-1)+rps (57)
S S 0 SO

P =P (58)
s

The omission of ¢ in Eq. (58) lcompared with Eq. (14)] is the usual

assumption of the P-y model, Then Eq. (56) becomes
o = 1l + (ay o 1) (59)

where pc is the consolidation density at the current energy E,

psy is the solid density at yield und the current energy.

Both densities are functions of internal energy. The first step in
solving Eq. (59) for v is to compute 0, and osy = aypy- The yield point,
given by the coordinates (py, P&f(E), E) is on the intermediate surface
that passes through the initial density po. It is computed from Eq. (21),

i
which is simplified because Po po. The density p:. the zero-pressure

D]

density defined at the current E, is related to po through Eq. (19)

i
= T
Py oo/ : (60)
Then Eq. (21) 1is
p Tf
P .o f(E) =k £(B) [ L— -1 (61)
y ) o,
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Hence the density at the yield point is

P P
- 6
p =— {1 + —= (62)
f o

The distension ratio ay = psy/py is solved from the Mie-Grlineisen equation

by neglecting the Hugoniot energy and the D and S terms.

p
P =kK[2-1] +Tp E=4P (63)
sy  s\e_, sy Yy

Inserting ~ P = p into Eq. (63) yields
yy sy
]

0
K X+ E-P
s p, y y

(o]

The consolidation density pc is found from an iterative solution of the
Mie-Grilneisen equation with known E and P = Pcf(E). Then, with ps = Q0,
Eq. (59) is a gquadratic equation in , and can be readily solved., With
o known, ps = ofp is obtained, and PS is found from the equation of state
of the solid. The required pressure on the compaction surface is then
Ps/a, where we have now used Eq. (3) to define the average pressure in

the porous material,

Rate-Dependent Compaction

The process of void compaction requires some time to occur, This
time of compaction will appear as a rate-dependence in the constitutive
relations, Several models have been proposed to represent this rate-
dependence: three are incorporated here as options. Each model requires

one additional parameter, a time constant,
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All three have been constructed here in a common form, the one
24
suggested by Herrmann, The volume change is separated into three
components as follows

dv dv dv

dv
S="= 2 + ve + ve (65)
dt dt dt dt

where dVS is the change in solid volume

dvve is the elastic change in pore volume

dva is the plastic change in pore volume.
The plastic change in pore volume is rate dependeat and not elastically
recoverable on unloading, For instantaneous loads, only elastic changes
occur. For low rate loads, a large amount of volume change may be taken
plastically. For intermediate loads, the volume change is partly elastic
and partly plastic. The foregoing process matches exactly the behavior

usually assumed for rate-dependent shear deformation.

Butcher's P-y~-1 Model

To account for the rate-dependent effects that Butcher7 observed
in the compaction of polyurethane foam, he proposed a rate-dependent model
in which the dynamic pressure could exceed the static for short duration
loads. He proposed the following relation between the dynamic overpressure

P-P . and the rate of change of distension ds/dt.
s

dt ~ dt +-d—; _-r— o
where ye is the value of 5 for purely elastic compaction

Fst is the pressure on the rate-independent compaction surface

r is a time constant and dae/5P is taken along a loading path.
Rate-dependent effeccs can occur whenever the pressure computed on an
elastic basis exceeds the pressure on the compaction surface, Pst. The

pressures involved in the compaction process are shown on the P-V diagram
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of Figure 14. The dynamic pressure P can be approximated as the following

function of «,
P=P +———(Pe-P ) (67)

where ae and astz are distension ratios corresponding to Pe, the pressure
at the current density based on elastic behavior, and pst2' the value of
Pst at the current density. The derivative dae/dt in Eq. (66) is taken

as a constant for each time step At,

Rl (68)

It can be shown that the derivative dae/dP in Eq. (66) is given approximately

by !

do {
- e
('a;') (69)
o]

where (d!xe/dP)o is taken as a material constant. Equations (67), (68),

2
K

Q. [= X
3] 8
[+]
1
R
R
=]
!

x' =
(@] wn
N——"

[}

and (69) are then substituted into Eq. (66).

a -aq do o -«
-2 SR I ey O st2 Wp _ p (70) '
dt At T \dP o0 -« e st2
o e 2

st

The following value of & is obtained by integrating Eq. (70) and evaluating

the result at the current time,

o -ao a4 -o 'dot
T e st2 e 1 At e P-P
o =]— - + O exp| —\— e st2
At\P - P (do /dP) st2 1 T \dP —————
e st2 e o o \&

-0
e st2

T - O ) o -
e st2 e 1

st2 At(P-P ) (da /dP)
e st2 e o

(71)

+ O

This result indicates that & approaches O 5 as T goes to zero, and
s

approaches ae as T goes to infinity, as required,
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Holt's Model for Rate-Dependent Compaction

2
Holt introduced a rate-dependence that is a function of the
difference between the current distension and the equilibrium distension

at the same density:

doy
o=o, " T gt (72)

where g is the value of o for the density p on the static compaction
surface, and T is a time constant. This form contains the assumption

that there is no elastic change in y associated with changes in density.

When this elastic change is included and the equation rearranged, the

result is
dy o=
doy _ e ____ st (73)
dt dt T

where dae/dt is the elastic change. Here d(y - ae)/dt is the rate of
inelastic change in y and is proportional to the difference between

y and ast' Thus the rate goes to zero as  approaches ast' To integrate
Eq. (73), it is assumed that dae/dt is a constant, as in Eq., (68), and

that JSt varies linearly with time from as to o . Then Eq. (73) takes

tl st2
the form
o -
dy e 1 o 1 t
—_— — . = = + - s 74
dt At T T [O’stl (9st2 ~ Yst1) At] S

The solution to Eq. (74) evaluated at the current time, is

»
I [dl - — (@ - al) -a 4+ ﬁ (ozst2 - "st1)] exp(-At/t) (75)

For small values of At/e, o -~ agr while for large values of At/e, ¢ == astz;

hence the physical requirements are met.

59




From a comparison of Eqs. (66) and (73), Holt's model appears

to have a completely different physical basis from Butcher's, However,

similarity in the model can be demonstrated by placing Eq. (69) into Eq. (66)

and equating the right hand side to the right hand side of Eq. (73).

= : g . = - (76)

where TB and TH are time constants for Butcher's and Holt's models, The

time constants of the two models are related as follows

dor
T P-p —
B % ~ % st dP
_— . = (77)
TH P - Pl ¥ - e}
e -] ap

p
whisch is obteained from Eq. (76)., The two derivatives may be evaluated

approximately:
o o o 2
Por Pso_ o o o
P K K Bk - K
d sp :lp s i (78a)
and
ap 2
O 80 o
— o D 78b
(ap) Kp K STy
p [} s

With the foregoing values of the derivatives, the relationship between

the time constants is

TB K
?-a--xi--l (79)
H i

If K o were nearly constant, then the two models would be equivalent.
Generally TH will be much larger than 1'B for the same material. We note

that for K1 = Ks/a, the Butcher model provides no rate dependence.
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Linear Viscous Void Compaction

The linear viscous void compaction model is derived from the
work of Berg25 and Poritsky,z6 and from our observations of void growth.
For this model it is presumed that the material surrounding the void
follows a linear viscous law with a coefficlent of viscoczity 1. Ther,
neglecting inertial and surface tension effects, the rate of change of
unrecoverable relative void volume is

dvvp 3(ps.-pth) (80)

dt = 4n Vv

Thus the rate of plastic void collapse is dependent on the dynamic over-

pressure, PS-Pt y acting in the solid material, and on the current void

h
volume, With the presumption that pressures vary linearly during the

time increment, Eq, (80) can be integrated to obtain

30t
= Vv - —fP - P P -P 81
vvp vo &P [ Sn( s th ¥ "so tho)] (81)

where vvo is the relative void volume at the beginning of the time increment

P, Pso are pressures in the solid material at the end and beginning
of the increment

th’ Ptho are the threshold pressures for growth at the end and

beginning of the increment,

The elastic void volume change occurs because of a change in pressure from

Pso to Ps. The elastic modulus associated with this change is the one

governing the void volume change from pso to Pse' Therefore, this elastic
change in void volume is

ps - ps
o
AV = —— |V -Vv (82)
ve P - P ve o vo
se so
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where ve and vvo are the relative void volumes associated with the

pressures Pse and Pso, and V and Vo are gross specific volumes,

For the model calculations, the pressure is determined by
requiring the elastic and plastic void volume change and the solid volume
change to match the total volume change as in Eq, (65), The plastic

volume change follows Eq. (81).

The solid volume change is presumed to be linearly related to

the solid pressures at the current gross density.

ps - pth
vV =V + [V -V )—-——-———-—
8 sth se sth/P - P
se th

(83)

here V and V are solid specific volumes correspondi to P and
where sth se P : = th

Pse. Waen Eqs. (81), (84), and (83) are inserted into Eq. (65), the

following results.

P - Pth Ps - P
AV=V + (v -v E2—I1 _y +—so"(VV-VV )
sth se sth/P - P S0 P - P e o vo
se th se so
[TlAt
v Pp -P P - P -1 4
* vvo — 2 ( s th ¥ so tho)] Loy

where T1 = =3/(4n). the growsth coefficient,
Eq. (84) is then solved by iteration to determine Ps' The first approxi-

th are approximately equal to

pso - Ptho' The last term in Eq. (84) is then linearized as follows:

mation is obtained by assuming that PS - P

TlAt
Mad I (?s B pth * pso h ptho) = e TlAt(Pso - Ptho) X
1+T1M(p -P_~-P +P ] (85)
2 s th so tho)
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The resulting equation is then solved for Ps = P;, the first approximation,
With p; in Eq. (84), a value of AV = AV’ is obtained. The second itera-
tion begins with a linearization as in Eq. (85) based on the assumption

that there is a small difference between PS and P;.

The foregoing iteration scheme works best for small changes in
density., Therefore, a provision is made for subcycling in cases where

large changes in density occur in a single time step.

Discussion of Rate-~Dependent Models

All three of the foregoing models were derived to fit observed pore
volume change data, and they were cast in a form like the modified
Maxwell element proposed by Zener13 for shear stress relaxation, But in
fact, do any of these models really represent dynamic por ' collapse in
a solid with a stress relaxation like the Maxwell model? This question
can be answered by a recent analysis of Carrnll27 in which he treated
spherically symmetric void compaction in such a solid. The eguation of
motion he obtained for the combination of void and solid materiol is

oo o 4ng
P=P (a) + Q(a;a’a) - (86)
st daa - 1)

where P is the external pressure and Q is an acceleration term that miiyht
be neglected in a macroscopic model. Since the material is treated as
rigid-plastic, no elastic term appears, Comparing Eq, (86) with Butcher's
model in Eq. (54) and neglecting Q and the elastic term in (54), we see
that the time constant T must be given by

TdP 4n
dor, ~ Soauw - 1)

(87)

Thus dP/dae must ke given a special form for 7 to remain constant,

The usual form for the linear viscous model can be derived from

Eq. (86) by replacing ¢ with vv through the aid of Eq. (6). The resulting
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expression, neglecting Q, is

4
448

=P

e T (88)
which is equivalent to Eq. (80) for rigid-plastic behavior with the solid
pressure equal to the porous pressure. Thus the linear viscous model used
here has the correct physical form for describing pore collapse in elastic-

plastic material from initial yielding to full compaction,

Rate-Independent Fracture Surface

The fracture surface is defined in P-V=-E space in the same way
as the compaction surface, The shape is similar to the compaction (yield)
surface shown in Figure 2: the ordinate increases in the tensile sense
with density, and decreases with increasing internal energy. A curve on
the surface is shown in Figure 8, The intercept of the surface with the
solid equation of state determines the threshold pressure for fracture of
solid material, All other points define thresholds for porous or par-
tially fractured material, The surface is assumed to be unique so, for
a given (p,E) state, the behavior is the same whether the porosity results
from fracture or from the manufacturing process. Two options are provided
for treating this surface, In the constant strength option, the threshold
pressure in the solid material (Ps) is taken as a function of internal
energy only. Then the threshold pressure P in the porous material decreases
with'increasing o, because P = Ps/a. The second option is the Carroll-

3
Holt model, which is also used in compression, The algebra of this model

is handled as described earlier,

Rate-Dependent Fracture

Fracture occurs gradually through the nucleation and growth of small
voids or cracks, Because these processes require time, a rate-dependent
relationship should be used for dynamic calculations, Currently the PEST
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subroutine contains the SRI model for ductile fracture,

The ductile fracture model fits naturally into the PEST subroutine
because they are both concerned with pressure and not with deviator
stress, The ductile fracture model has been described in detail else-

8
where and is simply summarized here.

The nucleation rate is given by the expression

- P
. th
F =X exp(f-s———-) (89)
(o] P
nl
where P, 1s the threshold pressure in the solid material required to

th
permit nucleation, The corresponding pressure on the rate-

dependent surface is P = P .

& st = Fen'®

Pn1 is a parameter governing the sensitivity of the:material
to nucleation,

N 1is a nucleation rate constant.
o

The voids are presumed to be nucleated according to a distribution:

Ng(R) = NAt exp(-R/Rn) (90)

where Ng is the number of voids per unit volume larger than R
Rn is a nucleation distribution parameter
At is the time increment,
By integrating with respect to R over the entire distribution, we obtain

a nucleated void volume

4 3 .
Av = 6 ¢« = R NAt
n 3 n
P - P + P - P
K s th SO tho
= R
8 L NoAt exp( 2 Pnl (91)

Here pth and P ho are threshold pressures at the end and beginning of the

time increment.
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The void growth rate is given by

3(P =P )
o th
V = = . v (92)
v 4y, v

where pth is the threshc.d pressure for growth. There is no theoretical
Justification for using solid pressure rather than gross pressure in
Eq. (92). However, use of the solid pressure permits fracture to continue
to full separation rather than being quenched when the pressures are low,
Thus this form is used until more is learned about the late stages of
fracture.

The solution for pressure in the ductile fracture model proceeds as
in the linear viscous void model with the addition of nucleated volume as
part of the plastic void volume change, The exponential in Eq. (91) is

approximated, in the same manner as the growth exponential in Eq. (85).

Summary of Model Changes

Most of the foregoing models for porous behavior are derived from
work of other investigators, The following changes were made in these
models to put them into a form suitable for insertion into PEST,

e The Holt model was augmented to include elastic behavior,

deviator stresses and the effects of internal energy.

Also the static P=V curve was given a different analytical
form because Holt's form did not increase monotonically,

1
o The POREQST was improved to provide a more rigorous treatment
of the intemmediate surfaces,

3
e The Carroll-Holt model was expanded to include elastic behavior,
deviator stress, and thermal effects,

5
¢ Herrmann's P - ¢ model was recast as a p_ - ¢ model, and
changes were made for elastic and thermal behavior,
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Butcher's7 model was modified to include thermal effects and
deviator stresses, Also the treatment of elastic behavior

was altered slightly, and the relation between pressure in

the solid and porous material was changed from PS =P to Ps = oP.

The dynimic fracture model was altered to permit elastic behavior

of the pore volume, Previously the void volume was allowed to
change only by viscous growth and not by elastic expansion.
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III EQUATION OF STATE FOR SOLID MATERIALS

In hydrodynamic calculations, the equation of state provides the
pressure as a function of internal energy and specific volume. (In a
complete equation of state pressure, energy, volume, teiperature, and
entropy are determined.) The material may be treated as solid, liquid,
or vapor or in a mixed phase., In simple equations of state, such as the
one used in the PUFF code,9 an accurate treatment is given of the equation
of state surface only in the vicinity of the Hugoniot, Since it is presumed
that the material expands similarly to a perfect gas, a modified gas
equation is used for expanded states. Between the Hugoniot and the highly
expanded states, a fitting function is used., For computer calculations
to follow wave propagation in a material, a choice must be made between
the simple and sophisticated types of equation of state. The sophisticated
equations of state may require much more data than are available, Even
if available, these data are normally procured at static testing rates, and
therefore the data and possibly the form of the equation of state are
inappropriate at shock loading rates. Although the simple equation of
state provides 1little insight into the detailed behavior of the material,
it has the advantage of containing only a few parameters that must be
varied to match the experimental data,

In the current SRI PUFF wave propagation code, three equation-of-state
options for solids are provided. The first is the usual PUFF equation of
state: a combination of the Mie-Grlineisen form for compressed states and
the PUFF expansion relation for expanded states. As a second option, an
extended version of this PUFF equation of state was constructed and
incorporated into a subroutine ESA. This new equation of state adds
some flexibility in fitting dyr-—ic and thermal data, The third option
is the three-phase equation ~.ate constructed by Philco~Ford and
implemented in the subroutine EQSTPF., The ESA and EQSTPF options are
described here and listed in more detail in Appendices D and C.
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Extended Two-Phase Equation of State: ESA

The ESA equation-of-state model constructed here is intended to
simulate approximately the more complex surfaces of the multiphése
equations of state while 1retaining enough simplicity that its parameters
can provide a match to experimental data. Specifically the new model
should provide the following three features;

(1) Variable Grilneisen ratio as a function of energy and density.

(2) A nonlinear variation of pressure with energy at
constant density,

(3) An approximate simulation of unloading isentropes
of the multiphase equations of state.

The ESA equation-of-state model is constructed in the following
way. A Mie-Grilineisen form is adopted for compression, and terms are
added for varying the Griineisen ratio and producing the nonlinearity
in internal energy. Yor the expanded states, the forms used are similar
to those used in the compression states for varying Grlineisen ratio and
internal energy. In addition, a series expansion is made in density.

As with the PUFF equation of state, the expansion and compression forms
are joined at the initial solid density. At that density the pressure
must be equal in the two forms and the derivative DP/Dp must be equal

from both expressions. Additional constants in the expansion equation

of state are evaluated by requiring that the equation of state surface
pass through given pressure, density, energy state points, Such state
points might be the zero pressure melt point, a boiling point, and a
critical point, Or one or two of them might lie on an unloading isentrope
obtained [rum experimental data or from a multiphase equation-of-state

calculation.
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For compressed states, that is, states where the density is greater
than the initial solid density, a modified form of the Mie-Grlineisen

equation of state is used. The following form was adopted:

9 3 Fou Flu
= D S - = e e— + (I r E
P=(Cu +Du +58u) |1 5 p 5 + lu)p

2 (93)
+ (F1 + qu) E
where C, D, S8 ure usual Hugoniot coefficients
b= D/Do - 1 is strain
p 1s density
po is initial density
r., rl are Grineisen coefficients

0
F., F_ are constants for nonlinear energy effect

1’ 2
E is internal energy.
In Equation (93), FO is the usual Griineisen ratio, rl describes the
variations of Griineisen ratio with density. For example, to make the
factor [p approximately constant, let Fl = = ro. The derivatives of

the pressure from Equation (93) are used to assure continuity with the

expansion equation and to determine the sound speed. These derivatives

are 2
Tuw [ u
(E) :(C+2D|J.+3S|J.2) I-L-'—l— 1—
ap E 2 2 P
o
r
2 3 (0} 1
+ (Cp + Dp + Sy ) -— =T ul -
2 1 p
0
2
F2E
+ (ro + T+ 2r1u) E + (94)
o
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9P\ _
(aE ! = (r‘0 + r‘lu)p + 2(F1 + qu)E (95)

The equation of state for expanded material, that is, for p less

+ (p-0) (b +bp+b 02 +b 93) (96)
0 0 1 2 3

where go, gl, ho, hl, bo... b3 are constants,
In equation (96) all the terms are written as functions or p rather
than 4 as in the compression equation of state, The p form is used
so that as p approaches 0, the nonlinear terms in p will disappear and
the equation approaches the perfect gas form P = p[E.

For use in the sound speed calculations which are given later, the

two derivatives of Equation (96) are listed:

(3),

2

2 3 2
+ (b0 + blp + b2p + bsp ) + (p - po)(b1 + 2bzp + 3b39 ) (97)

(%g) p(g0 + glp) + 2p(h0 + phl)E (98)

Y

A smooth joint at p = p0 is produced between the compressior and
expansion equations of state by requiring that the pressures and the
derivative of pressure with respect to density are equal at p = po-
For making this joint calculation it is presumed that all the parameters
of the compression equation of state are known and that the joint require-
ments serve to evaluate some of the expansion parameters. With this
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approach and the use of Eqs. (93), (94), (96), and (97), we obtain

the following conditions:

LA S Y
o
1 po
pO
1
W ==—— (F_~-F
11 > ( e 1)
o
(b +b + b 2 b 3) € (99
0t P1Po PP * P3Py ) = Py )

Evidently three more conditions can be imposed to evaluate the b terms
in the expansion equation of state, The conditions we wish to impose
are that the expansion equation of state surface pass through three

state points identified as follows:

(Pyr Pyr Ep)y (Pyup,, E)), and (P, pg, Ep)

For convenience in evaluating the b terms in the expansion equation of
state, we introduce a new variable R, which is simply the contribution

of the b terms to the pressure in Eq. (96).

2

=+ ]
1]

1}

2 3
P - po)(b0 + blp + b2p + b3p ) (100)
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The solution for the b coefficients can now be obtained by inspection by

rewriting R in the following expanded form:

A - - - _
0(0 00)(9 pl)(p 92)(9 93)

R =
(p0 - pl)(p0 - pz)(p0 - 93)

2
A -0 (- p )P - p)

+

2
(p1 - po) (p1 92)(91 - 93)

2
Az(p - Po) (o - ol)(p - ps)

* 2
(p2 = po) (92 - pl)(P2 - 03)

2
A3(p - po) (p - 01)(0 - p2)

+

2
(93 - po) (03 - pl)(p3 - pz)

(101)

where the Ai are constants to be determined. The constants are evaluated

from the foliowing observations:

dR
— = A at =
do 0 g p0

By comparing the conditions in Eqs. (102) with Eq.

the constants as follows:

el
0 =
pO

2
A =P - E - h +h E
g =F e ey v gy P B = (g4 hp B
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(100) we can evaluate
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Thus a complete solution is now available for all the constants in the
expansion equation of state., However, for the computer calculations it
will be expedient to evaluate the b terms from the A1 terms. This

evaluation is performed in two steps: first, multiply all the factors
in the numerators of Eq. (101) to obtain series expressions in p. For

convenience the following difinitions are made:

A
a = 2
o] (po = pl)(po = 02)(0o - 03)
A
i
'y = 2
b, - 0,) (o, - DJ)(pi - p) 1=1, 2, 3 (104)

i£)#£k

Now when the expanded terms are collected into a single series in p, the

b terms can be evaluated as follows:

b = - - = =
o 8oP109P3 7 B P PoPg T 850,0,P5 T 840 PPy
b1 = popl(a2 + 33) + popz(al + a3) + pop3 (a1 + az)
t PPy B ag) 4oy (8 4 ay) 400, (a4 a))

b = = po(a1 + a2 + a3) - pl(ao + a2 + a3)

-p.(a +a_+ 33) + ps(a0 +a_ +a))

2 o 1 1 2

b =a +a +a_ + a (105)
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Besides computing pressure, the equatjon-of-state subroutine in a
wave propagation computer code is often required to compute sound speed.
For the present calculations the sound spced referred to is the bulk scound
speed, dependent only on the pressure term, The square of the sound speed
is given as the derivative of pressure with density along an isentrope

and has the following form:

2 P P P (5P
c =(-§—) - (2—) v = (-Z—E) (106)
Since the present equation-of-state model does not ‘include entropy, the
first form for the sound speed cannot be evaluated., However, the sound

speed can be determined from the other two derivatives; these are given

in Eqs, (94), (95), (97), and (98).

Philco-Ford Equation of State

The Philco~Ford model10 is a three-phase equation of state for metals,
It was selected for the present project because it appeared to provide
enough flexibility that it could be applied to ceramics and other nonmetals,
This equation of state was incorporated into a subroutine described by
Goodwin,et al, Our subroutine is organized very differently from Goodwin's,
but the equation of state is not modified, This equation of state is described
in some detail here because of the unavailability of Goodwin's report.

This model treats specifically the solid, liquid, and vapor phases,
mixed liquid-vapor and solid-liquid phases, and the phase boundaries. These
regions are shown in Figure 15. The solid phase is handled by a Mie-Grilneisen
equation of state, The pressure-volume-temperature relation fcr the solid-
liquid mixed phase is the Clapeyron equatjon, In addition it is assumed

that the following ratio is independent of temperature,
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E (T) - E (T) LR
£ s 0

VD -V (D = Z\V_ (107)
£ s o

Here Ez and ES are internal energies in liquid and solid.
V£ and Vs are specific volume of liquid and solid, all defined at
the same temperature,
AEO is approximately equal to the heat of fusion at zero pressure.
AVO is the volume change from solid to liquid at zero pressure,

Then the Clapeyron equation takes the form

AEo T
P(T) = ZV_ ( ;") -1) (108)
(] M

where T and TM are tcmperature and temperature of melting. The internal
energies EE and Es in the liquid and solid phases in the mixed phase

region are computed from the following relations

= aC TM

E = E CT (T/T -1) - T /T -1

) o s ) T,/ ) (109)
_ AC.TM

Es = ESo + C TM(T/TM -1+ > (TM/T =1) (110)

where Eﬂo and Eso are internal energies at zero pressure on the phase
lines oﬁ either side of the solid-liquid region.

E is the average specific hes: at constant pressure in solid

and liquid phases.

AC is the difference between liquid and solid specific heats,

The phase line between solid and mixed solid-liquid phases is obtained

by equating pressures in the two regions at the same density and internal

energy. The phase line between the liquid and the mixed solid-liquid
phases is determined by computing the point where the solid fraction of

material just reaches zero,.
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The liquid phase equation of state is simply an interpolation function
between the phase lines on either side. The interpolation is a combined
linear and logarithmic function of dénsity along lines of constant
internal energy.

The phase line between liquid and more expanded states is given by

the Hirschfeclder relation up to the critical point.

p
£ =1 + c1 (1 - %} ) + dl (1 - %— ) (111)
Pe M M

where pz is the density in the liquid phose
‘pc is the density at the critical point
T and TM are variable temperature and melting temperature
c1 and d_ are material constants,
Above the critical point the phases are divided arbitrarily by the specific

volume at 'he critical point. The pressure in the mixed liquid-vapor phase

ls given by a modification of the Clapeyron equation,

T
P M
. - ] = — —_—
in P (Qa Nb)( T ) + db /n TM

(112)

(o]

where P and Pc are pressure and pressure at the critical point
o, and ab are material constants,
The internal energies Ev and EE in vapor and liquid states in the mixed-

phase region are given by

0 kZTc (ov) ]

E =E +CT-2RT[(k + 2k T /T) — - — (113)
v o) v c c o) l ¢ o T p
c c
(o = )T
P a b ¢
=E = ZRT V =V ) — -1 114
Ez \4 c coc( A ¢ P [ T * ] | ’



where Eo is the internal energy of ideal gas at zero temperature
Cv is specific heat of vapor of constant volume
Zc = Pch/RTc, nonideal gas compressibility factor at critical point.
Tc'pc' Vc, pc are temperature, pressure, volume, and density at
critical point,
pv, Vv are density and specific volume of vapor
Vt is specific volume of liquid

k k k are constants
O’ 2! O’av va

1!
R is the gas constant.
The pressure in the vapor state is given by a relation due to

Hirschfelder, a generalization of the van der Waals equation of state.

2 3
RT
P - g 5 - a(g—) - a’(E—) (115)
1 - bﬂ + b’ (2—) pc pc
0

c

b and b’ and material constants

a and a’ are functions of T/TM.

The phase line between vapor and mixed liquid-vapor phases is found by
equating pressures in the two regions at the same internal energy and
density,

The SRI subroutine incorporating the Philco-Ford model is given in
Appendix C together with a description of the nomenclature and sample

input data for aluminum, beryllium, anu titanium,
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IV METHODS FOR DERIVING POROUS MODEL PARAMETERS FROM DATA

To derive a set of constitutive relations for porous material it
is necessary to have a quantity of material data available., The cost
of data acquisition can be reduced by performing only those
experiments that will provide the most important data. Several of the
common sources for data and the types of data that may be obtained from
them are described here. Duplicate sets of information may be obtained
in many categories, but this is often necessary because of the uncertainty
in the data from each source. In addition, some data may be obtained at
static testing rates and room temperature,whereas the information desired
would pertain to impact testing rates and near melting. In the absence
of better data, however, the static, low-tempecrature data can be useful
in guiding estimates.

With the available set of data summarized, the methods used for
constructing the material model are developed., This construction proceeds
in two steps. First the data are used to construct graphic forms for such
functions as the compaction curve and the thermal strength reduction factor.
When all the necessary functions have been constructed, a set of mathematical
models describing each aspect of the constitutive relations for porous
meterials is selected, and the parameters for these models are chosen by
fitting them to the appropriate functions.

Data Sources

For most materials, some handbook data are available for solid and
possibly for porous material. The thermal expansion coefficient for the
solid material aids in constructing the intermediate surface for the porous
material and guides the selection of the Grlineisen ratio for solid and porous
material. The bulk modulus aids in constructing the intermediate surface
and also in reducing Hugoniot data into separate pressure and deviator
stress components. The Grineisen ratio and Hugoniot parameters for the

solid arc¢ indispensible in constructing the equation of state for the
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porous and solid material. Sound speeds and the Poisson ratio can be
helpful in determining shear and bulk moduli from Hugoniot data. The
shear modulus 1is also helpful in interpreting Hugoniot data. Thermal
strength reduction information is usually available from slow testing-
rate experiments and can give a lower bound on the true thermal strength
reduction factor for dynamic experiments. The yield strength can aid in
interpreting Hugoniot data and in providing fracture parameters for porous
and solid materials,

Quasi-static one-dimensional compression experiments are often
conducted on porous materials to obtain the crush curve, taat is, a
loading line across the compaction surface in energy-pressure-volume
space. If intermediate unloading and reloading occur during the compression
experiment, bulk moduli may be obtained to aid in determining the intermediate
surfaces for the porous material, If lateral stresses are measured as well
as axial stresses, an indication of the magnitude of the deviator stress
is obtained.

Impact experiments can provide loading and unloading paths and the
equation-of-state surface for the solid and the constitutive relations
for the porous material at the appropriate testing rates and temperatures.
If multiple embedded gages are used and a Lagrangian analysis is performed
on the resulting stress or velocity records, unloading moduli may be
obtained for construction of the intermediate surfaces of the porous
material. If a Lagrangian analysis is not performed, it will be necessary
to construct a possible set of constitutive relations and then simulate
the experiment with a wave propagation computer program. If the cowuputed
stress or velocity histories match the experimental results closely enough,

it is assumed that the constitutive relations are correct.
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Electron beam and x-ray sources provide a means for nearly constant
volume heating of the material; this condition allows for a study of the
constitutive relations in a direction unobtainable by other means. Usually
stress or velocity gages provide records at several points in the target.
Impulse may also be measured. Although the measured results do not give
any equation-of-state information directly, important data can be obtained
by estimating the complete set of constitutive relations for the porous
material and then attempting to simulate the entire experiment with a
wave propagation computer program, Modifying the constitutive relations
until the computed histories match the gage measurements provides evidence
about the crush curve in the energy direction, the Grlineisen ratio for
porous material, the moduli in the porous material, and the vapor equation
of state. To guarantee that the resulting set of constitutive relations
will be applicable to a wide range of behavior, the radiation data base
must include experiments in which the radiation depth is both shallow and
deep, and the fluence levels must range from those that cause only yielding

up to those that cause significant vaporization.

Construction of the Constitutive Relations

Constitutive relations for a porous material are developed in two
stages. First all the data are gathered,and all the necessary functions
and parameters are estimated, However, much of the data, such as attenuation
data and electron-peam and x-ray measurements, cannot be used directly to
construct the constitutive relations. Therefore, the next stage is to
use the estimated relations to simulate some of the experiments with wave
propagation calculations., In this stage the initial corstitutive relations
are modified to provide a satisfactory match between the recorded stresses
or velocities and the computed values. In the following discussion the
functions required for the constitutive relations are listed and methods

for making initial estimatec are described,
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Construction of the constitutive relations for a porous material
begins with the determination of the equation of state of the corresponding
solid. Hugoniot data, including the bulk modulus, solid density, and
Grilneiscen ratio must be available. The yield strength and shear modulus,
melt energy, and sublimation energies are also necessary to give even a
minimal definition to the equation of state, If experimental data are no.
available un the solid, estimates of some of these quantities can be made.
The solid density can be estimated from the theoretical density. For
example th.» density of HfTiO4 could be estimated by the method of mixtures
from the densities of HfO2 and T102. Moduli, melting, and vaporization
parameters of the unknown solid may be obtained from measurements on
substances from the same family. Such estimated values should not be
regarded as accurate but may be sufficient for treoting material that
remains porous throughout the calculations,

The Grilneisen ratio should be taken from energy deposition experi-
ments if possible., It should provide the relation between internal energy
and pressure for specific volumes near the initial specific volume., Impacts
may give some circumstantial evidence of Griineisen's ratio, but only for
densities and pressures that are not critical for simulating x-ray depositions,
Thermal expansion and specific heat data may be combined to form a Grlineisen

ratio as follows

where Cp is the specific heat at constant pressure. However, this method

of computing ' 1s usually unreliable. To have any meaning, the four
quantities must be known at the same pressure and temperature, If possible,
Eq. (116) should be based on average values over the range of temperature

of interest. Thus we recognize that [, qt, Ks, and Cp are not constants

and that average values obtained in the temperature, pressure, and density

ranges of interest must be used.
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The development of constitutive relations for the porous material begins
with the construction of a series of functions: a thermal expansion function,
thermal strength effect, compaction curve, fracture curve (fracture strength
as a function of porosity), bulk moduli as a function of porosity and energy,
rate functions for pore collapse, and a deviator stress function. These
functions cannot be treated independently. Normally one attempts an initial
construction of each function and then modifies them slightly so that they
do not conflict in their representation of a porous material, These functions
are presented here in an arbitrary but possible order that might be followed
in constructing the functions.

Thermal Expansion Functions

The thermal expansion effect, referred to in Eqs. (18) and (19)
governs part of the intermediate surface construction. Usually at, the
volumetric thermal expansion coefficient, can be obtained from room temperature
measurements, If possible, it is important to obtain an average value that
is valid from room temperature to melting. Such a value aids in determining

the Grilneisen ratio. If the energy and density at incipient melt, EM and

p;, are available for an initial density pz, then Eq. (20) provides the approxi-
mate result i
K 0
[ o —— == 2 (117)
o E
so M pM

If this Grlineisen ratio conflicts with that in the solid equation of state,
adjustments must be made based on the relative certainty of the two ratios.

Thermal Strength Effect

As a material is heated, its strength is usually reduced. Handbook
data such as that shown in Figure 16 are often available to guide in construct-
ing this function. The analytical function representing the strength effect
is constructed from two parabolas as shown in Figure 12, The five parameters
shown in the figure are two abscissas, an ordinate at the joint between the
parabolas, and the midpoint distances from straight lines. These values can
all be easily selected from a strength-energy ~urve.
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If a set of electron-beam data, such as that of Shea et a1.28 on
copper, is available, it should be used, These data have the advantage
of representing the heating rate and loading durations of most interest.

Bulk Modulus

The bulk modulus varies as a function of both porosity and internal

energy. In the model we have presumed that the thermal strength effect
also governs the reduction of the modulus. If this is not true, an additional
function should be used, Data may be assembled in the form shown in
Figure 17, which also shows the theoretical variation of modulus with
porosity from Eq. (11). The static data are from reference 29, All the
data may be plotted on a single curve by using ki = Ki/f(E) as the ordinate
and p: = pi(l + FpsoE/Ks) as the abscissa, From the fit of the ki,pi
data to the model curve, an appropriate value of Ko can be chosen. This
value of Ko may disagree with that from ultrasonic data, 1In case of
conflict, a choice must be made based on the relative reliability of the
data and on the importance of the effects attributable to each measure-
ment (attenuation would depend on the unloading modulus; precursor arrival
would follow sonic velocity).

Compaction Curve

The compaction curve at zero internal energy is constructed from
a combination of static compaction data and Hugoniot data on porous
materials, The Hugoniot data should be modified before plotting, as
shown in Figure 18, Here Eq. (22), the expression for pressure on the
intermediate surface has been used to eliminate the effect of internal
energy in reducing the pressure and pi. The zero-energy pressure and

density are then

PZ = P/f(E) (118)
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FIGURE 18 HUGONIOT DATA PLOTTED ON THE ZERO-ENERGY REFERENCE PLANE
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The pressures in Figure 18 were not modified because f(E) 2=1,0 for the
impacts up to 120 kbar, and the higher pressure points were assumed to
lie on the solid equation of state, not on a compaction surface. With
the data shifted according to Eqs. (118) and (119), there should be a
unique, zero=-energy compaction curve generated. This compaction curve
can be fitted to any of the four models included in PEST, With the data
in pressure-volume or pressure-density form, the POREQST model is the
easiest to use because it requires the input of a selected set of coordinates
along the compaction curve, The Holt, Carroll-Holt, and Herrmann P-y
model parameters can also be easily selected from the plot, but there is
no guarantee that the entire analytical function will fit the data.
Therefore if one of these P-y formulations is chosen, it is advisable
to make a P-y plot of the data and the compaction curve of the model to
assure that the fit is satisfactory.
Rate Effects

Loading rate or load duration has some effect at all testing
speeds. However, the effect may not be important in comparing data from
tests that differ only by an order of magnitude in loading rate. 1In
these cases it is often possible to use a rate-independent model to
describe rate processes., If the data strongly indicate the presence of
rate effects, then these effects may be fitted to one ot the rate-
dependent models.

For rate-dependent compaction, each of the three models has only
one free parameter, That parameter can best be selected by constructing
a series of loading curves as a function of the parameter, as shown in
Figure 19, and comparing the curves to the data, Alternatively, it may
be desirable to select the appropriate time constant or viscosity coefficient
based on known shock-front thickness, void growth information, or other
auxiliary data. The loading curve prescribed by this choice of the time

parameters should be checked by comparing it with the data.
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Deviator Stress

Even weak porous materials sustain some shear or deviator stress.
However, this stress is not available from dynamic one-dimensional planar
experiments and is usually not obtained in static experiments. The measured
stress is a sum of the pressure and deviator stress in the direction of
propagation, With no experimental constraints on the magnitude of the
deviator stress, the analyst often presumes that there is none: this
choice has prevailed among users of P-a models. If it is desirable to
postulate the presence of a deviator stress, some circumstantial evidence
may be available to guide the prescription:

e Strength of the material in static tensile or
compressive measurements.

e An initially large unloading modulus corresponding
to K + 4G/3 followed by a gradual reduction to the
expected bulk modulus,.

o The shear strength of the solid material.

o The difference between the stress compaction
surface resulting from impacts and compaction

surface from electron beam experiments (which
represents only pressure),

Together these data can be used to prescribe a shear modulus and initial
yield strength, plus a work-hardening modulus that will allow the yield
strength to reach the solid value at consolidation.

Minimum Data Required for Characteriziqg Porous Materials

Often it is necessary to construct constitutive relations for a
material for which there are few data. A minimum number of experiments
must be planned to provide the needed data, To discuss this problem we
have divided the constitutive relations into three groups: solid equation
of state, compaction and intermediate surfaces, and fracture behavior,

The determination of the solid equation of state requires several
well-instrumented Hugoniot and attienuation experiments plus some electron

beam or x-ray measurements. At least three Hugoniot flyer-plate impact
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experiments should be planned at three stress levels spanning the expected
range of interest. Each impact should have multiple, embedded gages, These
experiments yield three Hugoniot points and three unloading paths, providing
the Hugonjiot function, bulk modulus, and estimates of yield strength and
shear modulus. These Hugoniot impacts should be supplemented with at least
two attenuation experiments to verify the unloading behavior,

To explore the high energy states of the solid it is necessary to conduct
some electron beam or x~ray experiments, For electron beam expériments a
choice must be made between voltage levels (which determine depth of deposition
and uniformity of the radiant energy through the material) and total fluence
levels., A pressure-energy relation is needed that spans from low energies
to the highest values of interest in the x-ray simulations. A low-voltage
beam gives a range of internal energies in a single test and is therefore
well-adapted for a rapid survey of material over a wide range of internal
energies, Two or three tests covering the range of energies of interest
are probably enough if accurate depth-dose profiles and stress records
are obtained, Because of the usual variability of electron-beam data,
each experiment should be replicated three or more times., The electron-
beam records are used to compare with stress or velocity histories computed
in a wave propagation simulation. In preparation for this simulation the
impact data must have been used to generate a complete equation of state.
Then the electron-beam data provide a basis for altering the Grlneisen
ratio, sublimation energy, and other vapor-state parameters,

The compaction-surface and intermediate surfaces are also obtained
from a combination of electron-beam and impact data. There 1is considerable
material variability and a large change in unloading modulus as a function
of porosity in porous materials. Therefore, at least five Hugoniot impacts
with multiple embedded gages should be performed to obtain Hugoniot points
on the compaction surface and unloading moduli to define the intermediate
surface. For x-ray simulations the most important information is the initial

yield point on the crush curve; therefore, this region should be emphasized
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in the impact experiments. At least two attenuation experiments (thin

flyer impacts) should be performed to verify the unloading moduli that
govern attenuation,

A complete pressure-energy curve to melting should be obtained from
electron-beam or x~ray data. This curve is essentially that given by
JRPWS in Figure 11. One good record with a depth~dose profile that
provides the required range in energy would be sufficient, but two or
three tests are usually required to give sufficient accuracy in deposited
energy over the entire range., The low-energy portions of the pressure
energy profile (JRPW in Figure 11) determine the pressure-energy relation
on the intermediate surface, while the higher energy portions determine
the compaction surface. The most important information is the peak pressure
on the pressure-energy curve (point W in Figure 11) because this pressure
generally governs the peak recorded stress in x-ray experiments. The
electron-beam experiments should be performed with the shortest deposition
time possible, During a large deposition time, wave propagation reduces
the peak pressures, smooths out the features of the wave, and generally
causes a loss of detail, The depth-dose profile, total fluence, and flux
history should be measured and used in the computational simulation of
the electron beam experiments,

Fracture in porous materials requires more of the same type of data
needed for solids because fracture may begin at many porosities. For
solids, impact experiments are performed in which rarefaction waves
interact and produce tension for a brief period. Since the fracture
process is time-and-stress-dependent, tests must be performed at a range
of stress levels and stress durations, The stress and time ranges must
span those of interest, and the stress range should include one point
below the damage threshold and one just above to ensure accurate definition
of the threshold stress. The number of fracture experiments may be
minimized by using tapered-flyer impacts that provide a range of tensile
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stress durations in each impact., At least three tapered-flyer experiments
with a range of damage are required to determine a fracture model at a
single initial porosity. This requirement is valid for the SRI ductile
and brittle fracture models,8 the Tuler--Butcher30 model, and any other
model that recognizes both stress- and time-dependence of fracture,
Electron-beam experiments can aid in determining the fracture parameters
under radiation or at high internal energies. The data from the electron
beam experiments should be viewed as an aid in adjusting the model for
energy effects and not for the initial construction of the model, Fracture,
even in ductile materials, is strongly dependent on stress level; hence a
test technique in which stress can be controlled to a few percent and

measured even more accurately is necessary for model construction,
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APPENDIX A

USER INFORMATION FOR PEST SUBROUTINE

This appendix contains instructions for using PEST, the generalized
porous equation-of-state model, in a wave propagation calculation. Flow
charts, nomenclature, and listing of PEST are presented, The function
TSQE utilized by PEST is described in Appendix B,

Although pressure .1d deviator stress are computed for all porous
materials, the PEST subroutine calculates only pressure, Then an auxiliary
subroutine is called to handle the deviator stress, In SRI PUFF the stress
calculations are controlled in a subroutine called HSTRESS. This subroutine
acts as a switch to determine which solid equation of state, which porous
pressure model, and which deviator stress model are used for each material.
The flow chart for the subroutine is shown in Figure A-1, All of the
stress calculating subroutines are fully isolated from the COMMON variables
for stress, energy, time, etc. Thus these subroutines can be used to
provide partial information about stresses (as they might for the components
of a composite), or auxiliary information (for porous and fracturing
material), or they may be called within an iteration loop for repetitive
stress calculations at a single time.

Within PEST there are CALL's to three solid equations of state:

EQST, ESA, and EQSTPF. The subroutines ESA and EQSTPF -~re described
and listed in Appendices D and C of this report. EQST, containing the
standard Mie-Grineisen and PUFF expansion equations of state, is in

Reference 31 and is similar to that in Reference 9.
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FIGURE A-1 FLOW CHART OF HSTRESS, STRESS-SWITCHING ROUTINE
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FIGURE A-1
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Deviator Stress Models

(model 6).

The special deviator stress models are described in Reference 32

(models 1, 2, 3, and 4), Reference 12 (model 5), and References 11 and 33

The standard deviator stress option in SRI PUFF includes elastic-

plastic behavior with work hardening and Coulomb friction. Except for the
9
Coulomb friction, this model is like that given in the PUFF 66 manual.

In the standard model the yield strength at the end of a time step is

given by
Y =Y-Y, b0+ fp (plastic)
(A-1)
=Y + Bp (elastic)
where
Y is the yield strength at the beginning of the time step
YADD is the work-ﬁardening modulus in the computationally convenient
form of BY/BS
) pressure
B- Coulomb friction factor,
The value of P is derived by examining the usual forms of the Coulomb
law:
?Y =cC + ON tan ¢ (A-2)
J.J_z =k+3aP (A-3)
where
TY is the shear stress at yield
¢ 1is the cohesion
ON is the normal stress on the yielding surface
¢ 1s the angle of internal friction
J2 is the second invariant of the deviator stress tensor
k, ac are constants.
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i Equation (A-2) is the usual form employed in soil mechanics, while Eq, (A-3)
34
is that proposed by Drucker and Prager as a three-dimensional form of (A-2).
In our calculations we took the three~-dimensional form of Drucker and

Prager and related the standard material constants ¢ and ¥ to k and ac

VER: «/"ﬁcp

K o b (A=4)
1+N /2
+ ¢/
J3 N ! 'x
30, = 3 T+n/2 (A-5) !

2
where N¢ = tan (/4 + 9/2). From these relations the corresponding

values of Yo (initial yield) and B can be found

3cvfﬁ;

o 1+N/2 (4°8)
®
N -1
3 o | ,
=21+ N(p/z (A-7) |

At the end of a time step during PUFF calculations the yield value

Y e Y A
is increased by ADD P if yielding occurred but the pressure factor in

Eq. (A-1) is rot added on, As in other yielding models, the deviator
stress is limited to 2Yc/3 at each time,
Any of the above deviator models (except 6) can now be used in

conjunction with PEST., An appropriate means for varying the elastic

moduli and relating the one-dimensional strain to the plastic-strain
in the solid for model 6 have not been found. Thus model 6 should not

be used with PEST.
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Calling Procedure

PEST is called at two points in a wave propagation code, The first
CALL occurs in the initializing subroutinc (GENRAT in PUFF) at the p‘lace
where material properties are inserted, At this CALL, the original
solid density (DOS) and the Hugoniot parameters (C, D, S, I = G) must
be available in COMMON), Also the initial porous density (po = RHO(M))
must be available and is read in before the CALL statement, Additional
material data for each model used are read in directly by PEST during
the initializing CALL: they are not available to the rest of the program,
All other input and output variables are inserted through the CALL
statement, The CALL statement used in GENRAT is

CALL PEST(LS, IN,A1,A2,A3,A4,A5,M, EXMAT(M),RHO(M),A6, RHOS(M), A7,A8,A9,

Al0, Al11,A12,A13,C(M),D(M),S(M),G(M),A14,Y0(L),A15,A16,CZQ(M),CWQ(M),
where the first parameter (LS) indicates initialization when set equal
to zero, After initialization for the first porous material, LS is
set to 1 in PEST, The second parameter (IN) is the file containing the
input data, The A's represent variables that are not used during this
CALL, The parameter M is the material numher, EXMAT(M) is sound speed,
ana CZQ(M) and CWQ(M) are quadratic and linear viscosity coefficients,
These three quantities (viscosity coefficients for POREQST model only)
are determined during initialization in PEST and returned to GENRAT.
During this CALL, the subroutine reads cards required for each of the
equation-of-state models employed and initializes its internal array

variables. The input information is described in the following section.
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The second and all subsequent CALLs to PEST are made to obtain the
pressure in a wave propagation calculation. In SRI PUFF the following

CALL statement is in the subroutine HSTRESS:

CALL PEST(2,5,NPR(M),H(J,1),J,T(J),DT,M,CS(J),DH,DOLD, RHOS(M),RHOI (J), P(J),
pPST1(J),AST1(J),EH, EOLD,F,C(M),D(M),S(M),G(M),MUM,YADDM,RVV(J),
ENV(J),C2J,CWJ)

The value of the first parameter given (LS = 2) signifies that press

is to be computed. The indicators NPR(M) and H(J,l) specify which solid

equation=of-state subroutine is to be used and the state of stress in

the material (compression, tension, or recompression). The J,DT,CS(J),

DH, and DOLD,P(J),EH and EOLD,F,MUM,RVV(J), and ENV(J) are the cell number,

time step, cell sound speed, present and previous densities, cell pressure,

present and previous energies, thermal strength reduction factor, shear
modulus, relative void volume, and void density, respectively. The RHOI(J),

PST1(J), and AST1(J) are the previous time intermediate surface density,

rate-independent pressure and rate-independent distension ratio.

Input Information for All Models

The subroutine PEST is in two parts: the first handles reading
and initializing, and the second (beginning at location 1000) handles
pressure computations, During the initializing portion, a set of six
indicators is first read in to indicate which porous equation of state
models are to be used under the three conditions considered: compression,
tension, and recompression, Recompression is assumed to apply aftér
fragmentation occurs, Next, one lire of data that is common to all
models is read in, Then data are read in for rate-independent models
fcr each of the three conditions, and subsequently for the rate-dependent

models for each of the three conditions., Arrays are repeated wherever

possible,
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Table A-1 gives values for each of the six model indicators: KCS,

KTS, KRS, KCD, KTD, AND KRD,

. to the models as shown in Table A-1,

Non=-zero values of the indicators refer

Tension and recompression model

indicators are set to zero when it is desired to utilize the compression

model data again, The arrays are then repeated and reinitialized with

TABLE A-1 DEFINITION OF INDICATORS FOR PEST MODEL OPTIONS

Indicator Value Model
Rate-independent compression 1 POREQST
2 Holt
Kcsor 3 Carroll-Holt
KRS 4 Herrmann P-alpha
5 Hendron*
Rate-independent tension 1 Constant strength
2 Fracture mechanics®
KTS 3 Carroll-Holt
Compression with rate effects 1 No rate dependence
2 Linear viscous void
3 Holt
KCD or KRD 4 Butcher P-alpha-tau
Tension with rate effects 1 No rate dependence
2 NAG ductile fracture
KTD 3 NAG brittle fracture*

* Not yet implemented.
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appropriate changes in sign., When no rate dependence is desired, it is
permissible to specify all zeros for the dynamic indicators. A sample
of these indicators is shown in Figure A-1, The format used is Al0,I6,
I2,12, The data for each model are provided in.the order of the
indicators, These data used the formats (A10,110),4(Al10,E10,3), or
(A10,7E10,3);., The sample data are appropriate for porous tungsten., The
meaning of each parameter in the data can be found in the nomenclature

list below,

In many cases, there are optional ways to insert the data, F._. the
data common to all models, AK, the initial modulus, may be inserted as
-Gs' the shear modulus of the solid, In this case PEST computes AK
from Eq, (11), If the AK value provided is larger than Ksp/oso, AK

is reset to K p/p .
8  so

In the POREQST model the fifth density in the RHOP array is the
consolidation density, If this value is omitted, PEST computes it by
finding the density appropriate to the P2 value in the last density
region, If desired, an array of quadratic and linear artificial viscosity
coefficients can be inserted following the RHOP array, If these arrays
are omitted, COSQ is set to 4, and C1 is 0,15, The fifth members of
eack of these arrays are returned to GENRAT and are used as the viscosity

coefficients for the solid,

In PORHOLT the consolidation density, RHOP5, may be inserted as
the consolidation pressure, Then PEST computes the appropriate consolida-

tion density from this pressure,

Input for the Carroll-Holt model may take seversl forms, If YCH
and ¢ are used and YCH is named as shown in Figure A-2, these values
are used directly, This value of YCH is not a pressure on the compaction
curve but a solid yield strength, which governs compaction, Instead of

Y the pressure on the compaction curve at the initial density, PY, can

CH’

103




INILNOYENS 153d HOJ LNdNI 3TdWVS 2Z2-V 34NOId

¥°C 60¢3000°1=-01+3006°1 0le300C°|

0te3v02°1

[10*3959°1

9

9°%v

z dUQVA 0le3000°1

60*3000°Y
60+ 300C°Y
oue3000°2

9°v

21dOH8 6V0+3000°Y

= La3dl

= L¥3)
= Ad
=d4UAVA

sd400vA
=d4QUVA

2%y

=08 3ZA

g4=3000"5 =Hdl
WIVA NV1I-VHdTYV-d HTHOLNE HO ITOHHOd DIWVNXA
vU=3000"1 OT+3C00*1 ¥u=3000"5= = d3}\
¥o
¥0=-3000°S~ = W3l
VIV FUNLOVHES TJTLLONA BO JIOA SNODSIA YVANIT
9y = LH3) Ul+3000°1=- = Gn3)
'VIVa HIONFULS INVISNOD
ODle3000°1 = Ad [T«3N0U"2 s Jd
VIV vAdTY-d NNYRUYIH
v[=3000°1 = 543 0l+3000*1 = Ad
¥O
11+3000°*2 = Jda 0l+«3000°*1 = Ad
O
»(=3000°1 = Sd3 60«300€°6 = HIA
'¥lva L'TOH-TIOHUYVO
6LU23000°9 = OHUAH(Q [ve3dgB0°*2 = GdOMY
'Viva 1TOH¥Od
*J =d730 (le«3000°2 =dd €
60«3000°2~ =d73a 01+3002°8 =Z2d ¢
6Le3000°8~ =d130 01+3006°9 =2d 1
01+«3000°1 =2d 0
gt L Al LeE = pSU)
10¢3068°1 10¢3S98°1 (Ve39Se° | =2d40HY
€ =9 3JUN
YIva 1sdIH0d
2l+3080°1 =dnW 21+3001°2 =)y
:STAGON TIV ¥0d QIS vVIvd SNo¥od
000020 04¢01°30% EVEOTV SHeS16SIN

*STIAON INFANIJIA-ALVY JUNLOVHE FTILIOAd GNV dIOA SNOJSIA
YVANIT OGNV STIGOW INIANIJIANI-FALVE (¥ OGNV L) LIOH-TIOWHVD ANV (D)LISOIYOd ¥Od VIVA HOLVOIGNI TdGON FTIINVS

et M

104



be inserted, Also the consolidation pressure, PC, may be provided instead
of ¢. The subroutine then computes the appropriate value of ¢. However,
the functional form of Eq. (53) does not permit a value of ¢ that is
appropriate for all values of PC/PY, If the requested value of PC is
too small, it will be adjusted upward in the program to the minimum
permitted. The three possible forms of the data are shown in Figure A-1,
This data card also contains TER7, the value of void volume at which
separation occurs in tension, If TER7 is read in for the compression
model, it is available if the tension model is a repetition of the

compression model, TER7 has no meaning in compression,

Only one parameter, TERl, is used for the linear viscous void model,
However all seven parameters for NAG ductile fracture can be inserted

for the linear viscous model; they are then repeated, with no sign changes,

for the NAG model,

The nomenclature 1list is followed by a flow chart for PEST in
Figure A-2, A sample impact calculation is exhibited in some detail in
Figures A-3 through A-7, The stress histories in Figure A-7 indicate
the character of the waves produced by the impact., The subroutine

listing follows the results of the sample calculation,
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NOMENCLATURE OF PEST

Formal and External Parameters

LS

NPRM

H(and IH)

TJ

DOLD

RHOS
RHOI

PST1

Definition/Units

Initializing indicator:
O Initialize for first porous
material (Reset to 1 in PEST)
1 Initialize for other materials
2 Compute pressure for each
porous material

Indicator designating which solid
equation of state pressure model
to be used

Indicator telling state of material:
S Solid
P Porous compression
T Porous teasion
Q Porous recompression
R Recompression after

fragmentation
Z Fragmented

Coordinate cell number

Spall parameter; equals zero when
spallation occurs,

Time increment, sec
Material number
Sound speed, cm/sec

3
Current cell density, g/cm

3
Previous cell density, g/cm

3
Solid material density, g/cm

Previous value of density at zero
pressure and energy on the inter-
mediate surface, g/cm3

2
Pressure at a cell, dynes/cm

Previous value of rate-dependent
pressure, dynes/cm
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ASTI

EOLD

HQSTCM

FQSTDM

IQSTSM

EQSTGM

YADDM

RVV

ENT

CZJ

CcwJ

Input-Related Variables

AK

COSQ(MP, I,N)

C1(MP,I,N)

Previous distension ratio for a point on
the rate-independent pressure curve

Current internal energy estimate for
a cell, ergs/g

Previous value of E, ergs/g
Thermal strength reduction factor

Solid bulk modulus and first coefficient
in Hugoniot relation, dynes/cm?2

Quadratic coefficient in Hugoniot
relation, dynes/cm2

Cubic coefficient in Hugoniot relation,
dynes/cm2

Gruneisen ratio
Current shear modulus, dynes/cm

2
Work-hardening modulus, dynes/cm

Relative void volume

3
Void density, number/cm

Coefficient of quadratic artificial
viscosity

Coefficient of linear artificial
viscosity

Porous Bulk modulus defined at density
RHOP(MP,1,1), dynes/cm

Coefficient of quadratic artificial
viscosity, with I-region number for
POREQST model

Coefficient of linear artificial
viscosity, with I=region number for
POREQST model
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DELP

DPDRHO

EPS

KCD, KRD , KTD

KCS,KRS ,KTS

-4

NPM

NREG

PC

PORA, PORB, PORC(MP, I,N)

PY

Pl

P2

RHOP(MP,1,1)

RHOP(MP,I,N)

RHOP(MP, 5,N)

Maximum deviation from linear pressure
curve for given POREQST region, dynes/cm

Slope of rate-independent porous pressure
equation just beyond elastic limit,
dyne-~-cm/g

Parameter introduced to give finite
consolidation pressure for Carroll-
Holt model

Rate-dependent compression, recompression
and tension model indicators

Rate-independent compression, recompression
and tension model indicators

Porous material number

Array subscript variable = 1,2,3
corresponding to compression, tension,
and recompression

Porous material number corresponding
to material number M

Number of porous regions in POREQST
model

Consolidation pressure for Herrmann
P-alpha model

Calculated coefficients of porous rate-
independent pressure or density relation

Pressure corresponding to initial yield
point on compaction curve

Pressure on compaction curve of POREQST
model at RHOP(MP,1,1)

Pressure on left-hand side of each
region for POREQST model, dynes/cm

Denséty used for initial porous data,
g/cm

Porous densities for I=regign number
used by POREQST model, g/cm

3
Density at consolidation, g/cm
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TER(MP, 1,N)
TER(MP, 2,N)
TER(MP, 3,N)

TER(MP, 4,N) and TSR(MP,6,N)

TER(MP,5,N)

TER(MP,7,N)

TPH

YADDP(MP,1,N)

YCH

YZERO

Other Internal Variables

ALFD

ALFD1

ALFL

ALFS

2
Growth constant = 3/(4), cm /dyne/sec
2
Growth threshold, dynes/cm
Nucleation radius parameter, cm

Parameters in nucleation function,
no./cm3/sec and dynes/cmz:
N=TSR(MP, 4,N)*exp((P-TSR(MP,5,N))/
TSR(MP,6,N))

Nucleation threshold for Ductile
Fracture and static pressure for
Constant Strength model, dynes/cm2

Relative void volume at which
fragmentation occurs

Time constant (sec) associated with
Dynamic Porholt and Butcher P-alpha-
tau models

Increment of yield strength, for I=region
numbei in POREQST model

Pressure on compaction curve at RHOP(MP,1,1)
in Carroll-Holt model, dynes/cm

2
Initial yield strength, dynes/cm

Dynamic distension ratio for current
pressure, between elastic and rate-
independent values

Previous value of dynamic distension
ratio

Distension ratio corresponding to
current elastic pressure and density

Current distension ratio for a point
on the rate~independent pressure curve
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L W

TRt e R RN R AT NG o AR i

BULK
CJ

DREF

DS

PEL

PJ

PST

PTH
RVV

RVV1
TF

2
Current value of bulk modulus, dynes/cm

Current sound speed calculated in solid
equation of stute subroutines except
when CJ = 1,

Density at P-V plane, computed by
removing effect of thermal expansion
at constant pressure, DREF=TF*D,g/cm

3

Solid material density, g/cm
2
Previous value of pressure, dynes/cm

Pressure_based on elastic relations,
dynes/cm

2

Current pressure, dynes/cm
2
Solid pressure, dynes/cm

Pressure based on rate-independent
pressure model

2
Threshold pressure for solid, dynes/cm

Current relative void volume; takes on
negative value to indicate fragmentation

Previous value of relative void volume

Thermal expansion factor used to relate
current density on intermediate surface
to reference density at zero energy and
constant pressure
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| DIMENSION ARRAYS

| zERO ARRAYS |

SET LS = 1
MP = 0

[ mp =P+ |

b7 o U SR 0% by, Rt T A A e v R —

GO TO COMPUTATION
PART OF PEST

GO TO INITIALIZATION
PART OF PEST

v

[ meturn |

[ ReTturn |

PEST INITIALIZES AND COMPUTES
EQUATION-OF-STATE VARIABLES
UNDER COMPRESSION, TENSION,
AND RECOMPRESSION

THE INDICATOR LS SETS PATH
FOR INITIALIZATION OR
COMPUTATION

INITIALIZE FOR EACH POROUS
MATERIAL MP NUMBER.

MA-2407-14

FIGURE A-3 FLOW CHART FOR PEST SUBROUTINE
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PEST INITIALIZATION — RATE-INOEPENDENT MODELS

READ

KCS, KT8, KRS
KCD, KTD, KRD

| mEAD Ak, MuP, YZERO, RHOP ]

| compuTE INITIAL ELASTIC MODULI |

REFEAT mnu;mﬂ-

FIG

—'-{ CONSTANT STRENGTH =

-—,0-[ FAACTURE MECHANICS e
]

1
I—.ll REFEAT POREQET

2
—H REPEAT FORWOLT

)
—-{ MEPEAT CARMOLL-HOLT

URE A-3

READ STATIC AND DYNAMIC
MODEL INDICATORS.

READ POROUS ELASTIC DATA
USED BY ALL MODELS.

READ DATA AND INITIALIZE
ARRMAYS FOR NATE-INDEPENDENT
COMPRESSIVE MODELS.

READ DATA AND INITIALIZE
ARRAYS FOR RATE-INDEPENDENT
TYENSILE MODELS.

REPEAT INITIALIZED ARRAYS
FOR RATE-INDEPENDENT

AECOMPRESSION MODELS.

MA-2407-18

FLOW CHART FOR PEST SUBROUTINE (Continued)
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SUPRERE e e

PEST INITIALIZATION — RATE-DEPENDENT MODELS

3 |LINEAR visCOus VOID @ READ DATA AND
—=| OR DUCTILE FRACTURE INITIALIZE FOR
3 RATE-DEPENDENT
e f—t>| DYNAMIC PORHOLT COMPRESSIVE
r 4 MODELS.
| > BUTCHER P-ALPHA-TAU
< LTS ‘
150
1
" 3
2 1
7585
>0 2
KTD
0
3
2 o[ REPEAT LINEAR VISCOUS VOID | |  Repeat OR READ
<1 FOR DUCTILE FRACTURE DATA FOR RATE-
sl 1 DEPENDENT
READ BRITTLE FRACTURE AND
T10  LERAGMENTATION —  IENSILE MODELS.
KRO
> 1 1
800
0
2 REPEAT
T.-]neren LINEAR VISCOUS VOID INFTALZED
ARRAYS FOR
KCD = REPEAT DYNAMIC PORHOLT
o F RATE-DEPENDENT
g —tn| REPEAT BUTCHER P-ALPHA-TAU RECOMPRESSION
MODELS.

%0 [ AeTuAn

MA-2407-16

FIGURE A-3 FLOW CHART FOR PEST SUBROUTINE (Continued)
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rﬁﬂﬂw ~~~~~ s . 5

PEST COMPUTATION OF PRESSURE — COMPRESSION PATH

&

-l ¥
=]

1
== POREQST

2
—e-[ PORHOLT |->
3
—o| CARROLL-HOLT }o

COMPUTE
PS, PST

e

FIGURE A-3

114

TEST FOR FRAGMENTATION

COMPUTE CURRENT ELASTIC MODULI
AND ELASTIC PRESSURE PEL.

PEL > 0 IS COMPRESSION PATH;
PEL < 0 IS TENSILE PATH.

CHOOSE BETWEEN COMPRESSION (P)
AND RECOMPRESSION (R) ROUTES.

CALCULATE COMPACTION
CURVE PRESSURE AND CHECK
FOR CONSOLIDATION.
COMPUTE SOLID AND STATIC
PRESSURES (PS AND PST).

MA-2407-17

FLOW CHART FOR PEST SUBROUTINE (Continued)




PEST COMPUTATION — COMPRESSIVE PATH

2
= | LINEAR VISCOUS VOID |—

—3-’[ DYNAMIC PORHOLT |-

4
j=| BUTCHER P-ALPHA-TAU [~

[ compute AcFo, ps, Py, RVV |@

DETERMINE STATIC
PRESSURE IN
COMPACTION REGION.

COMPUTE RELATIVE
VOID VOLUME RVV,

GO TO DYNAMIC
PRESSURE
CALCULATION ROUTE.

COMPUTE ELASTIC
PRESSURE
DISTENTION RATIO.

COMPUTE DYNAMIC
PRESSURE DISTENTION
RATIO AND HENCE
EQUIVALENT SOLID
PRESSURE. THEN
COMPUTE DYNAMIC
PRESSURE PJ AND
RELATIVE VOID
VOLUME.

MA-2407-18

FIGURE A-3 FLOW CHART FOR PEST SUBROUTINE (Continued)
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PEST COMPUTATION — TENSILE PATH

Yua

KT88 = KCS

l

¥

1

pets| CONSTANT STRENGTH ==
2

KTSS [=—t»| FRACTURE MECHANICS fums

-ln-l CARROLL-HOLT 1-|
]
| comPuTE Ps, PsT | | comeute psT |
Yes
No
PST = P§
IH=§

No

L

PEL > PST

TENSILE PATH IS
FOR PEL < 0O

CALCULATE STATIC PRESSURE AND
CHECK FOR CONSOLIDATION IN
CARROLL-HOLT MODEL.

GO TO DYNAMIC TENSILE
PATH (16800)

MA-2407-19

FIGURE A-3 FLOW CHART FOR PEST SUBROUTINE (Continued)
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PEST COMPUTATION — TENSILE PATH (Continued)

1

KTDD = KTD

KTDD = KCD

[ xToD = 1 |

| | DUCTILE FRACTURE
KTDD
3
BRITTLE FRACTURE

AND FRAGMENTATION

PJ = rsr | compuTe py, RVY |e=

Yo

AVV > TaR? END COMPRESSION AND
TENSILE ROUTINES BY
COMPUTING TOTAL
ENERGY E AND STORING
PRESSURE AND DENSITY
CALCUTIONS FOR NEXT
CYCLE.

.
SET RVV

2000
[ sTORE P, RHOI, PST, ALFs | NEGATIVE WHEN

) FRAGMENTATION
[ ReTuRN  |@—{RVV = - |RVV]|

OCCURS.

MA-2407-20

FIGURE A-3 FLOW CHART FOR PEST SUBROUTINE (Concluded)
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SUBROUTINE PEST

SUBROUTINE PFSTILSs ININPRMsMJoTJoNTeMeCoDsDOLDRHOSIRHUTI 9PoPST]y PEST
1 AQT)EEOLNFoFOSTCMIEQSTOMIEQSTSMEUSTGMoMUMYADDMIRVVENTC2J4PEST

2 CuwJ EQRTHM FQSTEMIEQSTNMINCYC)

PEST 1¢ VERSION AF APRIL 197s

WRITTEN AT STANFORD PESEARCH INSTITUTE AY L, SEAMAN AND ReEe TOKWEIM
CODE PRNVIVER EQUATIONS OF STATE FOR POROUS AND SOLID MATERIALS
UNDER COMPRESSION(C) s TENSION(T) AND HECOMPRESSION(R) RY STATIC AND
RATE-DEPENUFENT MANELS, INITIALIZATION FOR ALL MODELS IS INCLUDED,

INDICATNRS OF MONELS TO HE CHOSEM FOR STATIC(S) AND DYNAMIC(D)
CONNITINNS FALLOWI
KCS OR XRRi RATELINDFPENNENT COMPRESSION
1 PAREYSY
2 PoaMyLY
3 CarkuLL=rOI T
& HFRRMANMN PoALPHA
S HFENDHON
KTS1 RATF«INNEFENDFNT TENSTUN
] CONSTANT STRENATHM
2 FRACTURE MECHANTICS
3 CARRULL=MOLY

KCO OR wROs FPOMPRFSSION wiTH RATE EFFECTS
1 NO RATE DEPFMDFNCE
2 LINEAR VISCNUS VOID COMPRESSION
3 PARNULTY
4 BUTCHER WealPHA=TAY

KTO1 TENGRIUN wlTW WRATE FFFECTS
1 NO RATF DECENDFNCE
2 Noagsbe PUCTILE FRACTURE
3 BRTITILS FRACTURE NN FHAGMENTATION

INDICATORS (X) ARF PEAD IN THREE=DIGIT PAIRS FOR & AND N CONDITJONS}
KCR KIS KNSa NXCXNOX KCOIKTDoKRDE OROXOX

INDICATORS W AND M

soL 1N

PURO!IS=PHF S&1RE

POROUS-TENSTON
PURNUSRECOVPRESSION
FRAGMEMTATIAN

RECAMPRFSSINN AFTEQ FRAGMENTAT]ION

BNO-IOA

INTERFN HoLUT

REAL MUMMUP,kIC

DIMENKION KCQ(4) ¢KCP (4) oXKTS(4) o KTL(S) ¢KRS (&) KRN (S)
DIMENSION NPM (&) ¢NREG(4)

DIMENSION TPH({403) osDADF (403)4xX1C(4)

DIMENKLION AK (4) oMIP(4) s YANDP (40593) oELN(4) sELG(4) ¢ TER(G0AVI)
DIMENSION RHOP(495¢3) oCESO(84503)0C) (405,3)

DIMENSION PORA(4:5¢3)+sPORK(4¢543) sPORC(4,%593)

UIMENSION EPQ(407) ¢DEL (493) oALE (443) ¢APC(403)

DATA SHF/1.8BR/1EP/1oFeb/oI0N/IH /90UT/6/4J01/TH «PEST=/9J02/

PEST
PESTY
PESY
PEST
PEST
PEST
PESY
PES?
PEST
PESTY
PEST
PESY
PESY
PEST
PEST
PEST
PEST
PEST
PESTY
PEST
PEST
PEST
PEST
PEST
PEST
PEST
PEST
PERT
PEST
PEST
PEST
PEST
PEST
PEST
PEST
PESY
PEST
PEST
PEST
PEST
PEST
PESY
PEST
PEST
PEST
PESTY
PEST
PEST
PEST
PEST
PEST
PEST
PEST

1 1nH «PNREQCTa/J03/10H «CARROLL=/9JO&/SHHOLT/4JQ5/10N «HERRMANNPEST

2 /4.J00/0M PoALPHA®/4JQT/10M =CONST ST/ eJOR/THRENGTHe/ PESY

3 2J0G/)AN oFRACTURE/Z1JQ10/6H MECHe/¢JQL1/710KH «LINFAR V/9JQ12/ PEST

& 9WHISC VOIDe/1JA13/10KH «DYNAMIC /,4JW)4/ARPORHOLT =/ 14015/ PEST

8§ 1nH «PORPROLTe/J016/RHRUTCHER®/ ¢ JOS/SHSTAT /4 JOR/SHRATES/ PEST

6 +JOIT/10H SDUCTILE /9J0168/9MFRACTURE=/ c::s;

S

Lhdd 7FRUING OF ARPAYS ese CPEST
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TR =t oy, L b ] 3 o M e S ok r -~
SUBROUTINE PEST (Continued)

(4 CPEST 63
IF (1S=1) 1leR,1000 PEST &6

1 DO & 1 s 1eb PEST o7
] NPM(T) ® N PEST o8
N0 &®a | & leé PEST o9

AK(T) = WUP(T) » KI1C(]) s ELK(I) = ELG(I) = ¢, PEST 70

S0 NREA(T) ef PEST 71
00 &1 ] & 1412 PEST 72

%1 TPH(T) = LADO(]) = EPS(]) s DEL(I) ® ALE(]) = APC(]) = O, KESY 73
DO 82 | & leap PEST T4

82 YAUNP (1) sRHOP (1) eCrSO(1)aCl(1)8PORA(])SPCORB(T)SPORC(1)a0, PESY 18
DC 82 [ = 1496 PEST 7o

53 TER(Y) = 0, PEST 717
MPSA 3 DPONJUSDPPEJSD, & LSsl <« (Cus), PEST 78

8 MPBMpe | PEST 79
NPM (M) & Mp PEST 80

C CPEST @)
C 0000000000000 00000e esnasenhesedenascves CPEST A2
c RFADING OF INPUT NATA CPEST @)
c V0000000000000 000000 0000000000000 000000 CPEST 86
c CPEST &S
C ove RFAL NATA USED HY ALL MODELS, eee CPEST &6
PEAD (IN9Q35) 21 ¢KCS(MP) sKTSIMP) s KRS (MF) s A2¢KCN IMP) oK TN {MP) PEST 87

}J kPN {MP) PEST &8
WRITF (6905) 21 yKCS(MP) sKTS(MP) yKRS (MP) 9 A2KCN {MP) yKTD (MP) PEST 8%

1 RN (MP) PEST 90
WRITF (64960) TNDIN. QY PEST 91

o CPEST o2
READ (INSQ2U)I AL o AK(MP) 4 A2 4 MUP (MP) 4 A3 9 YZERN A4 o RHOP (MP414]) PEST 93

WRITF (69Q2C) A1 ¢AK(MP) ¢A2yMUP (MP) sAT9YZERD A 4RHOP (MPo191) PEST 94

wRITE (£0QA0) TNNYINIJQ) PEST oS

ALFO 8 RROS/OWNP (MPo]y]) PEST 06

IF (AK(MP) AT, fe «AND, AKIMP) LE, FUSTCMO®RHOP (MPy19]) PEST 97

1 /AmnNg) GO TO 2¢ PEST 94

IF (A (MP) AT, n,) GO TO 10 PEST 99

C o TF AK IS NFGATIVF, 1T IS INTEWRPRETED AS TME SHFAK MODULUS @ CPEST 100
C o AF 1HF SOI TN, ® CPEST 101
GS s =aAK (MP) PEST 102
AK(MP) 8 EQSTCM/(ALFOS( TS®*FRSTCM/GS® (ALFD=]1,)) PEST 103
MUP(MP) & GS8(),a%,®(1,e],/8LF0) (3, 8FLUSTCM®A,%5(S)/ (9, %EVSTCM PEST lus

1 em,0p8)) PEST 10%

GO Tn )& PEST 106

C o TF ak IS YOO LANGEy IT I& REDUCED YO THE MAXIMUM PERMITTED, ® CPEST 107
10 AK(MP) & EQSTCMORHOP (MP 4] ¢1) /RHOS PEST 108
15 wRITF (099%0) AK(VMP) ¢ MUP (MP) PEST 109
WRITF (0eQ60) TDNHOUT O PEST 110

20 ELK(MP) = (FORTCM/AK (MP)=ALFQ)/ (ALFO=1,) PEST 111
YADNM 8 n 66666TeYZERD & MUP(MP) = 1,3333338NMUP(MP) PEST 112
CuSOART((AK(MP) ¢AMARY (o o MUP (MP) ) ) ZAMIN]L (DoRHOP (MPe191))) PEST 113
J2SSHCUNPY € JasJéz]NH PEST 114

Nsl] PEST 115
KCSMeK(S(MP) & KCDMekCD(MP) & KTSMSKTQ(MP) ¢ KTIDMSKTD (MP) PEST 116
KRSMgKKE (MP) & Kk[Makk (MP) PEST 117

TF (kTshk FO, 1) JIsSHTENS, $ IF (KRSM oFQ, () JasSHRECOMV PEST 118

c CPEST 119
C one REAY FUNH RATE-TNDEPFNDENT COMPRESSIVE MOLFL, eos CPEST 120
c CPEST 121
GO TN (49104510 15209530+540¢550)KCSM PEST Je?

AQ0 CONTINUE PEST 122
c CPEST 124
C oo REAU AND INITIALIZ2E FOR POREGSTY, *® CPEST 12%
REAP (IN9Q40) AY oNREG (MP) PEST 126

BRITF (60940)8) ¢NFEGINP) PEST 127
PRITF(GeA0) TODIINIJO2 o IDNIJOS 2 I 0 b PEST 128

HEAN (TNSOIN) ALy (RHOP (MP o] gN) o 12]:5) PEST 129

WHITE (0001 C) AL (RHUP(MPoloN) 918]),45) PEST 130

125

e




SUBROUTINE PEST (Continued)

WRITF (60960) INDINIJO2 PEsT

00 498 le1+5 PEST
COSO(MPTsN) & 4,0 PEST

498 CliMpyjeN) = 1,18 PESY
01 REAP(IN9Q1S) AL 4A2 PESY
BACKRPACF IN PEST

IF (A) LEQ, YHC AND, (A2 oEG, JHD +OH, A2 FQ, 1HD)) GO TO $02 PESY

IF (a1 JFU. THC ,AND, A2 LEOQ, 1W1) GO TO %03 PESY

GO0 Y0 S0s PESY

802 FEANC(INGOLIN)I AL« (CNSO(MPoIoN) 918],45) PEST
WRITF (640101810 (COSO(MPIToN) 9 181,5) PESY

WHRITF (0+960) TNNe TNy JGZ PEST

G0 TO0 SMm PESY

803 HEAD (INGQIN) Ao (CL(MPLT4N) 0T ] 5) PESTY
WRITE(6eS10) Ao (C)(MPyIaN)9Tm]10S) PESY
WRITF (Le0AN) IDD e TNy JO? PEST

804 C2J = (OCU(IMP,S4Y) PESTY
CWJ 8 L1IMPR,Y) PEST
NPENPF G (MP) PEST

FEAR (TNeG20) ) oP) PESY
PRITE (09920)A) oM PEST

WRITF (0e96C) TDD TN JR? PESY

PORA (Mo 1oN) & PY & PORR(MPy14N) 3 PUKC(MP414N) = ¢ PESY

PO ®ns NOR] oM PEST
REAN(TN9020) 81 ePP¢A2NELP A3 YADDP (MPoNQN) PEST

WRITF (04920)A1¢P2¢APNELPoARVYADDP (MP ¢NGWN) PESY

WRITF (6¢060) INDDIMeJU2 PEST

IF (hQ NF, MP) O TO Enal PERT

IF (wMUP (MPorPe] M) LGT, FHOR) GO TO Suebh PESY
RHOD (Mp gt Pe) o N) 8 FHOGH (] ,eTCUF (NeP2eN o oFASTCMIFLSTDMIEQSTSM, PESTY

1 EQNCTOMTOSTHMoFOSTEMIRMOSIFOUSTNMG0,4)) PEST
WRITE (04032:9HOP (MPoNPs1yN) PESY

WRITF (0+96C) TDLICUT Y02 PEST

5045 PRUNGRAMOP (MP ¢NQeY o) aWHOP (MP 4NQ¢N) PEST
AASPIap Vub ONFL PERHOP (MP oAU eN) /DRHO PEST

PORA (Mp ohlie] M) BP] eR}OP (MPoNTIo ] oN) 7DHU®AA PERY

RARBP2 P lab ONELP® (RHOP (MPyNQe] «N) ¢RHOP (MP (NUGN) ) Z11HN PESTY

PORRA (Mp ot1le ) M) BaRROP (MP g NQe ) ¢N) ®RKHOP (MP JNQoN) /DRHO®AR PEST

PORE (Mp o Mlie ] oN) Bmb o BNFLP® (HHNP (MP gMQe ] o N) ®RHOP (MP 4NUyN) /DRHO) ##2  PEST
YADDP (MP NG oN) B YADPR (MPGNR M) /DRHO PEST

508 Plep> PESY
YADDP (MPliPe) oN) = 1, PEST
PHOP (Mp 9g&oN) & REHOP (MPINPe ) oM) PEST

GO TN ofn PEST

S0 CONTINUF PESTY
[ CPESY
C oo RFAL ANU INTTIALTIZF BOR PORMOLT, o® CPEST
READ(IN9Q20) A1 «MHOF (MP oSN} 9 A2 sDPDRHO 9 A3 (PY s A& YADNP (MP o] oN) PERT

WRITF (04020) A ) oWHOIF (MP ¢S 4N) 982 3DPORMO A3 oPY oAG s YANNP (MPa] o) PESY

WRITF (0e9R1 ) T1DC s TN OIS IND .08y 24 J3 s Jb PEST

IF (FHUP(MPFe&¢N) LT, 100,) GO TO K12 PEST

P2 8 RHNP(MP (& N) PESY

NHUP (Mp oG oh ) aKMOG® (1,0 TSUF (0eP240e s FRSTCMIEUSTNMFASTSMIEQSTGMy  PEST

1 EOSTHMFUSTEMyRHOS FASTNMer, )} PESY
wHITF {60932) PHOP (MP 18 ¢N) PESY

WRITF (0096 1) TRDNUITI YOS PEST

812  HHOP (Mp g2 oN) gRHOP (MP 41y 1)@ (PY/AK (MP) el,) PESTY
FHUP (M g 29N) gRHOS/ (1, o RHOS®PY/RHNP (MP o 29N) /EQGSTCM) PESY
ALFFaknOP (MP 4 39N} /RHOP (MP s 2o M) PEST
RERHOP (MP g Jgr1) aRHNG PEST

PORA (Mp o) oN) mALFF® (ALFE®RHOP (MP 2 4N) /EQSTCMO®OPORHO=K/RHUS) PEST
RISPOARA (MPy] oN) /7 (RHOP (MPeSoN) aRHOP (MP s 2eN) ) PESY

POKRP (M oY oN) o (RHOP (MP ¢S oN) @RHOP (MP 439N} )/ PESY

1 (BHOP (MP o5 M) aRHOP (MP42,N) ) #8#22RY PEST
YADPR (MmPo1oN) 8 YAUDE (MPo] oMY/ {RHOP (MP 45 ¢N) =HNOP (MP92eN)) PEST

WRITF (0e¢030) PEST

126

131
132
133
13
138
136
137
138
139
140
1e1
142
163
1e4
145
le6
187
17y}
1649
150
15)
162
153
154
15%
156
157
158
156
160
lel
162
163
166
10%
166
167
164
169
170
171
172
173
176
175
176
177
174
179
180
18)
182
183
184
185
1H6
187
188
189
190
191
192
193
194
19098
196



Y i - _'} MM AN Y gy e Y g

e

S20
c

C oo

52}
s21%

S22

Ce
$2¢

827
5215

S28

830
c

C oo

SUBROUTINE PEST (Continued)

IF (N (6F. 2) GO TU 640
A0 TN 60N
CONTINUE

PFAU ANU INITIALIZF FPOR CAWROLL=MOLT,
FEAN (T1NeQ20) 81 o YCHIA2FPS(MPoN) s A TERIMP 4T oN)
WRITF(69920) A1 YCHIA2EPS(MPoN) ¢AIZTER(MP 4T oM)
WRITF (6+960) INNTNIJNOIJNG0J0SeJ2 1 U Je
IF (a1 ,F¥Q, 1nH YCH = y GO TV 528
PY = Y(CH
IF (BHSIFPSIMPINY) LT, 14} GO TN 526
P2 & FrSIMP M)
RV 8 ) ,=RNOP (MP o) o 1l) /RHDS
PY aNN PC wMOWN

PEST
PESY
PEST
CPEST
oo CPEST
PEST
PEST
PEST
PEST
PEST
PEST
PEST
PEST
® CPEST

RHOP (M 9 R ¢N) gRHOS® (] 0 TSAF (N yP2404 e EUSTCMEUSTNMECSTSMIEQSTGM, PERT

EnCTAMFUSTFMeRHUS FISTNMeN, ) )

BY = duMIN 8 (RHOP(MP4SeN)/RHOS=],.) *EQSTCI/PY
ALFA = ),./7(),abV)
DEL tMP M) = PY/(FOSTCMRALOG( ] o=RNOP (MP4] 41) /RHOS))
IF ¢ YLH LT, n,) bHMIN B AMIN] (BB41,/7VE( (MP4N))
BHMTIN & AMARY (HRMINGN,2462T%4LFAR®0202 ,85120AFA=],963))
1F (RR AT, RARMIM) GO TO &21
KB m HuMrh
RHOP (M eRet) = HROS® (] ,+RREPY/FQSTCM)
FO = Y,/RM
WRITF(0en?7)
GO Tn s 5
EQ0 s PyoaKNM
RO = ALDGLER)/ALNG(RYeEL)
F28 F) & (HV.Fr)eeRNM
IF (AMS(FA=F1) L. T. 1,F=y%®E]1) GO TO 524
Al ALOR(E 1Y /ZALNG(RVeE)
() n
Nw Nwe?
€2 FL1OFXP ((Ris=R])® (AI.NG(RVeF1) /(] ,=RHO®E1/(RVeEN))))
-¥4 ALOGIE?2) 781L0G(RYeF?)
AW g hn
IF (AHS(R2=kY) o1 T 1oF=5 JOK, &Ww ,Gke 10,) GO YO 824
E0 s F] % Rr s Rl ¢ E] 2 F2 §& k) = W2
GO Te 92>
EPS(MPyN) = D
NEL (MPyN) = (1, =RHUP (MPy5yN) /RHOS) /ALOGIFPS (MPyN) )
IF (WA LE, RRAMI™M) GO TO 8278
GO Tn y?2a

yeH MDD FPE KMOwN
PEL(MPyN) 8 A KORAT®YCH/ENSTOM
IF tYCn LT, re) FPR(MPyN) B AMAX] (FPS(MPoN) ARG (NEL (MPeN)))
PY 8 = hOOARETRYLR®A| OG(] 4=RHOP (MP ol ¢ 1) /RHOCeFPS (MPN))
GO TH H27

PY ANN FPe KNCWH
DEL(VPyN) 8 PY/FOSTCM/ALDOG() (=RHOP (MPe])o1)/HHOSEFFS(MPIN))
IF tYCrn LT ny) FPS(MPeN) ® AMAX]I(EPSIMP¢N) qARS (DEL (MPoN)))
RHOP (ME g8 aN) 5 HHOS® (] ,«NEL (P IN)SALOGIEPS (MPyN) ) )
CALI FUST (N, RHOP (AP 4K ¢N) sP2eMe],)

AL CaM
ALE (MPgN) & NFL (MPoN) ®ALOGIEPS(MPeN) )
APC (VP o1y 8 PHOS/RHOE (MP4K¢N)
WRITF (00925)0Y P2 4EPS (MPy}N)
WRITF (0eQ6N) TNNtITe e JNe
wRITF (69932)PHNP (Mg ¢M)
WRITE (0eQBNI INHIeNHITEJNTy NG
FPS (mpPgM) = 1 oFPR(MP M)
GO TN ehn
CONY INUF

REAY THIPUT AND TNTIT FOR MEKIRMANN PealPHA,

127

PEST
PEST
PEST
PESY
PEST
PEST
PEST
PEST
PEST
PESY
PEST
PEST
PEST
PEST
PEST
PEST
PEST
PESTY
PEST
PESY
PEST
PEST
PEST
PEST
PEST
PEST
PEST
PEST
PEST
* CPESY
PEST
PEST
PERT
PEST
& CPEST
PFSY
PEeT
PEST
PEST
& CPEST
PEST
PEST
PFST
PEST
PFST
PESY
PEST
PEST
PEST
CPESY
#® CPEST

197
198
199
200
20}
202
203
2064
208
ang
207
208
269
210
211
212
213
214
21%
216
217
218
219
220
e21
222
2213
224
22%
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
24)
262
243
244
245
246
247
248
249
250
251
252
253
254
2%%
LY )
297
2%8
2%9
260
rL}!
LY
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SUBROUTINE PEST (Continued)

READ (INe920) A sPCoA24PY
WRITF (09920) 41 ¢PCoA2,PY

WRITE(60960) TNy INeJOSeJA60J0S0J20J3 s Js

PORA (MBy1eN) & PY
60 TO 90N
CONT INUF

REAU AND TMIT FUR WFNDRON,

GO TA ofn
CONT INUE

REAL aND INIT FUR THS,
60 YO php
IF (M ,GF, 2) GO TO wan
NS D

JESEHTENS € JImyasiH

$ PORC(MPyleN) = PC

AFAU FOR RATE=THNDEPEMOENT TENSION MODEL.

1F (xTsM ,EQ, -
GO TO (815:62n452(0) KTEM

+AND, KCSM LEQ,

3) GU T0 al0

PFPLAT CARRUL| =mOLT ARRAY FOR Ns2,

ALE (MP2)maA) F(MPoL) 8
PEL (MPy2)8=DFL (MPo)) ¢
APC(MPo?2)181 4/ () amALE (MP o))
HHOP (Mp 9 & ¢N) aRFOG/ZAPC (MP2)
YRITF (69932)PHNP (MP 4§ (N)

EPS(MP¢2)mEPS(MP,])
TER(MP97¢2) 8 TERIMPeT))

WRITF (LeTAN) TNDINUT o YO0 JUA S JUS e Y2

60 TN enfn
CONT INUE

RFEAL aND TNIT FOR CONSTANT STHENGTH.
HEAN (1o Q20) AV o TFR(MP 4B ¢N) 1A TER(MP 4 ToN)
WRITE (64Q20) 21 o TEM(MP R N) 9329 TER(MP 4T oN)
RRITF (00960) TNN THJNT e JARIJNSH U2

60 Tn ehn
CONTINUF

PFEAL AN TNTT FOUR kIC,

HEAN (INeQOS) A) oKIC (MP) gA29 TER(MP 4T N)
PRITE (0e085) A1 ¢RICIMP) A2 TER (MP 4T (N)
WRITF (04060) NN TN JGOJUL0eJQSe J2

60 YO 0N

CONTINUF

IF (N 6Dy I 6O TU T0¢(
[T }

JPREMRECAM

PEAY FOR KATE=THNEPFNNENT RECOMFRESSINN MODFL,

IF (RkSk 6T, f) 30 T ARG
PFPLAT AHRAYS KKSEKR(S,

GO TN (6410648 :H6TeAsR) KCS™

PARENET,
PP & pPe)
N0 &42 ND 8 1, L.PP
PORA (Mp oMU+ 3) sPORA IMP I NQyY)
PORK (MP 9 2:Q9 3) sPORR (MP o110y ))
CONTTNUE
rO A4 A0S o8
WHUD (Mp 9?1l g 3) sRHOP (MPeNUe )
ClIMPyNN,3) ] (MPsNO,Y)
IF (1Q FQ, &) GO TO 644

YADDP (4P 4N o) mYANDP (MPINQy 1)
PORC (MPsM() 9 3) #PORC (MPeNQs 1)

COSN{MPINQsI)=CNSQ(MPINGL])
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[ 1

PEST
PEST
PEST
PEST
PEST
PEsT
CPEST
CPESY
PEST
PEST
CPESY
CPEST
PESY
PESTY
PESY
PEST
CPEST
CPESTY
CPESY
PESY
PEST
CPEST
CPEST
PEST
PEST
PFSY
PEST
PEST
PEST
PESY
PEST
CPEST
CPESTY
PEST
PEST
PEST
PEST
PEST
CPEST
CPESTY
PEST
PESY
PEST
PEST
PEST
PEST
PEST
PEST
CPEST
CPEST
CPLsSY
PESTY
CPEST
CPEST
PEST
CPEST
CPEST
PEST
PESY
PEST
PEST
PEST
PESTY
PEST
PEST
PESY

26)
2066
268
266
267
2068
269
270
27
2712
273
274
34
276
2m
278
279
200
201
282
283
L1y
288
286
287
288
289
290
291
292
293
294
29%
296
297
298
299
300
30}
302
303
3o
308
306
307
ki1 ]
309
Nno
l
312
k) )
e
ns
Ne
N7
J18
319
320
321
322
323
J26
328
326
327
azn
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(171}
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T00

T20
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T40

780

C ees
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SUBROUTINE PEST (Continued)

CONTINUF
GO o 700

PORMM T,

PORA (MP o1 93) mPORA(MPoTol) § PURB(MP.]1e3)8PORKE (MPolel)
PHOP (MPe%93) 8 RIEIP(MP¢S4]1) § PHOP(MP92:3) B RHOP(MP4241)
KHUP (MPe43) = RHOP(MPI9l) § YADDP(MP4193) = YADDP(MPels])

GO vn 100

CARROLL=HALT MODEL,
APC(MP3)BAPC (MP4Y) & EPSI(MP3)SEPS(MP,Y)
DEL(MP oI SDEL IMP4]1) ¢ RHOP (MPyS¢3)sRHOP (M 85,))
G0 T 700

HERRMANN PaALPHA MONEL,

POMA (MPe103) & PPRA(MPs1sl) S PORC(MP4)¢3) & PORC(MPoL])

WHOP (Mb oY e3) 8 HHOP(KPolo1)
60 TO 7fe
GO TO (4QCeS510e520:530056400580) KREM

REAU FOR RATE FFFFCTS TN COMPRESSION,

M B Y
J2RRKCOPPy L3 J3syestnm

IF (KTLM LEQ, ) JISERTFNSe §  IF (ARUM EU, ¢) JesSMRECONM

IF (xCum LLE, ') GO YO Tep
GO TO (T&ROT20eTA00760) KRCLV
CONTINUE

PESTY
PESY
CPESY
CPESY
PESY
PEST
PESY
PEST
CPEST
CPEST
PESTY
PFST
PEST
CPERT
PESY
PESY
PEST
PEST
CPESTY
CPEST
CPEST
PESY
PEST
PEST
PESY
PESY
PEST
CPEST

BFAL AND INIT FOR LIANFAK VISCOUS VAIN(C) NOR NPUCTILE FRACTURF(TIPESTY

HEAR(INSCLIM)IAY o LTFR(MPoToN) 0 I8l 7)
WRITF(0sQ1() A o (TFH(MPsToN)oTmleT)

IF (0 oF0s 1 LOR, N Fliy 3) WRITE(ASEP)INPoINeJCT10JAL20JURY

J2.J3e 08
IF (N (FQe P) WRITE (L6 INFeINGJOI T J01RIJQRyJ2
IF (TFR(MPohoN) FQy o) TEP(MPoR N Bk ,#3 14]1600TFR
(FPyI M) ®BA0TFE (MP g0 eM)
GO Y0 I&r
CONTINUE

QFaU AND INTT DYMpMIC POFROLY,
FEAN(INGO20) 1o TPHIMP M)
SRITE (0sQ2uU) AL e TRPRIMEGN)
WRITE(6e08N) TNNeTNIUNTII9JALG0JORGJIP eI IS
GO Y~ E&A
CONTINUE

pFal AND INTT DYNAMIC RUTCHER PeAlPRALTAU,
MEAR (INeO2C) AT 9 TEH (MB g M)
WRITF(60020) 214 TOR(MPyN)
DAUP (MPon) 8aALFO/AK(MP)® () ,=8x (MP) ®LLFU/ZERST(M)
WRITF (0eQBU) TNNeTNeJCIIJULEeUORGJU20JAv UG
M8 Nej

RFAL FOK BATE FFFECTS IN TFNS]ON,

GO TR(TOPeTHE 7T e9(0) N

J2SERTEAE

IF (XKTUM 6T, r) GO 10 (7504720+760) KTDOM
1F (KCuM +EQ, ©) GO TO 760

REPLAT AKRAYS KTNeKCD,
IF (KCUM «E0. 1) GO Y0 780
IF (KCLM «GT, 2) 6L T0 786

REPLAY LINEAR VISCNUS vOIN FOKR DUCTILE FRACTUNF,
TER(MP o1 42)8TFER (2Ps) 1) § TER(MP292)8aTER(MP2,41)

129

[ 11

[ 1]

PEST
PEST
PEST
PEST
PEST
PEST
PEST
PERT
PEST
CPEST
CPESY
PEST
PEST
PEST
PESY
PEST
CPEST
CcCPESY
PEST
PEsT
PESY
PEST
PEST
CPEST
CPEST
CPERT
PEST
PEST
PEST
PEST
CPEST
CPEST
PE-T
PEST
CPEST
CPEST
PEST

320
330
3
332
N
33
338
336
3
338
339
360
kY
362
363
k7YY
368
360
347
3N
349
iso
35)
352
383
k1 1Y
s
k1Y
357
3sA
arg
K1
36l
n?
383
ee
368
k'Y
367
k[Y]
369
370
mn
3re
373
376
s
376
arr
37e
379
g0
38l
32
k k]
k].T'Y
k1
k1)
37
IRR
349
390
39)
392
3603
394

e —a— A
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SUBROUTINE PEST (Continued)

TER(MP3,2)BTFN(MP9Iy]) S TER(MP,492)8TER(MPobs)) PESY
TER(MP 8, 2)BaTER(MPoRs)) $ TEH(MP6,2)sTER(MP46,]) PEST
TER(MP742) = TENR(MPaTo1) S TER(MPoW42) ® TER(MPyPo]) PEST

G0 TO 7%a PEST

796 IF (XCuM 6T, 3} GU TO 758 PEST
4 CPESY
C oo PEAD HRITYLE FRuCTURE AND FRAGMENTATION. o8 ¢ PEST
750 CONTIMUE PEST
760 CONTINUE PESY
GO TO 71&n PEST

(4 CPESY
C oo RFAL FUR PATE EFFECTS IN RECOMPRESSION, ose CPEST
770 Je2ssuRLCNM PESY
IF (kWM GT, ) GO TO 800 PEST

c CPESTY
C oo BFPEAT ARRAYS XkDerCD AS FOLLOMS, *e CPEST
IF (KCu™ LEG, n) RO TO 900 PEST

GO TO (S00sTRNGTASLTGr) KCON PERT

c CPEST
C oo RFPLAT FOR LINFAR VISCOUS VOID COMPRESSION MONFL, ee CPEST
T80  TER (VP NIBTER(MPII4Y) 8 TERIMP,29J)STER(MP42,1) PEST
TER(MPJ,3) o TER(MP341) ¢ TER(MP4s3) & TER(MPya,]) PEST

TEN (VP& 3) g TER(MPRel) & TEWRIMP46e3) & TER(MPb]) PEST
TER(MPoT43) = TEEIMPLTel) & TER(MPoReI) & TER(MPeb,1) PEST

GO Tn 00 PEST

¢ CPESY
C oo PFPEAT FOP DYNAMIC PORMOLT MODEL . e CPEST
788 TPR(MP oA B Pu(MP) PEST
60 v yor PEST

c cPESsY
C oo QFPLAT FOR RIITCHFR P=ALPHATAY MOLEL, oo CPEST
T90 TPH(MP 31 aTPH(MPl) & QDAUP(MP¢3)sDANP (MPe]) PEST
G0 YN yAn PEST

800 GO TN (90"e 7207200 Tar) KRDW PEST
900 RETIIWN PEST
910 FORMAT(AINGTFI" ) PEST
918  FORMAT(I1Xe2AY) PESY
920 FORMAT (A(A)N,F10,Y)) PEST
928 FORMAT (@ PYRGF)(,39® PCaeF1N,3¢® EPSE@E]IN,]) PEST
927 FOMMA“ (@ AWSALUTFE vALNF OF CONSOLINATION PHEGSURE WwAS CHANGED TO PESY
1 8F WwlTWIMN ALLOWABLF RANGE®) PEST

930 FORUAT (/) PESY
932 FUKMAT (@ CONGOLINATICM DENSITYS®E]N,I) FEST
938  FORMAT(2(A1C,16e12012)) PEST
940 FORMAT (A)DoIV(0AY0EIO D) PEST
948  FORMAT(A}ELIN,3) PEST
950 FORMAT(® NHUIx AND SHEAR MODULD ARF CHANGED TO ®2F12,3+® DYN/CM2®)PEST
960 FORMAT (1 e o TOX o5+ INDSA2,SHy INR[2,A100A0Q,4AK) CZES;
s

C 000808040000 0800000s a0Geva0dRRRBRRNOGOS CPEST
¢ COMPUTATINN OF PRESSURE DURING wAVE PROPAGATION, CPESY
c 0000020000000 000000 X X XYY XYY Y1) CPEST
c CPESY
1000 MP s NpM (M) PEST
Ivsw PESY

c CPEST
C oo COAMPUTE BULK AND €WFAR MODUL] APPROPRTATE TO CURRENT E AND O, c:gs;
c CPES
TF 8 1,¢F*EQSTGMaNHNG/FASTCV PEST

NREF = DeTF PEST

KVVY & AAS(RYV) 8§ ALFD] 8 1,/:1.=RVV]) & PHOI] = RKHOI] PEST

IF (avy L T.n, «8ND, DREF/RHNG LT, ]1,=ARSIRVV)) GO TO €000 PEST

IF (RHYY FW, Ce) RHOTSDOLD PEST
IF(FPLA(MP) JENGF e oANDe MUM (NEo o) ELGIMP) S (] ,=MUP (MP)®F /MUM) PESY

1 701 e=PHOP (MPo]4])/RN0OS) _ PESY

IF(F Lef, Co) GO TO 1R00 PEST
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399
400
401
402
403
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4)1
4)2
413
414
41%
416
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419
420
421
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423
426
428
426
427
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429
430
43
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43)
436
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OO0 OO0 DO
L d
®
*

1090
c

C oo
C oo

1100

1105

C o
1108
1109
1110
1112

1114
111#

C ee
1120

1126
1128

1130
1134

SUBROUTINE PEST (Continued)

IF (M JEn, 5@ € +JOR, H JER, SR M) GO0 T0 180N
ALFsRHUS/RMOT

RULKGEWSTCMOF / (Al FeELK (MP)® (ALF=]))

MUMgAMAXY (N g oMIIMO (Ll o=ELG (MP)eELG(MP) Z/ALF))

CsSORT ((RULK eMLIM) /D)

AAMPUTE PRESSIINE FROM ELASTIC RELATIONS,.
PELsRULK®(D/QHOTSTFe],)

ROANCH TO TENSILE OR COMPRESSIVE HOUTES,
IF (PEL (LT o) GO TN 1500
COMPRFSSION PATH,

KCHEgR(S(MF) & Nm}

IF (W Fne S0 T) H = &R 0

IF (H NF, SO0 7 oAnDng H owE, SR K) 30 TO 1090
- B &P W

ACRC 3 ARS (MP)

IF (KRS(MP) Fll, %) KCKS = KCS(MP)

N8 9

GO TN (110Ce1120411A80011m001140) XCRS

FALCUILATINN OF COMPACTIOM CURVE,

PARELART MnNFL,
NC & 0
+ST a (.,
IF (NRLF ,GT, HHNP (MR 4E¢N)}GN TO 1109
NC 8 NCeY
IF (PREF GT, RHOP(MPNCoeN)}} GO TO 1]105

.o

FST = ¢ #(PUKA(MPoNCeN) ¢PORB (MPINCoN) /DRTF oPORC (MP¢NCyN} /DREF®®2)

NQ = »aXn (]l enCel)
C2J u CReN(MDNQWN) T CWJ = Cl(MPyNON)
YADD» 8 YADDP (MP yNWeN)

cHELE FOR CONSOLINDATIONM IN LAST POROUS KEGION,
IF (ruef JLT, HHCS) 6o TO 1390
B0 TN (11100111241 104) NBRM
CALL FuSTIE oN PSSy eCYesDPINJNPNEY)
GO o ))m
CALL FSA(1e54MeCUIDIE oPSeDPNNJIDPOES)
GO T 1MNR
CALL EWSTPF (145 eMeCIeNoE 4PS)
IF (PS L1.T. PST) GO TO 1300

PST 5 K8

JH & 8Kk s

IF tP§ L Te PFL) GO Y0 1300L

PJa P & W= RR S & WYV s 0,
GO Th )9nn

BORHOI T MONFL.,
OUREFmAMAX) (DPFF o PHOP (MP g ] o))

PEST
PESY
PEST
PEST
PEST
CPEST
CPEST
PEST
CPEST
CPESY
CPESTY
PEST
CPEST
CPESsTY
CPEST
PEST
PEST
PESTY
PEST
PEST
PEST
PEST
PESY
CPEST
CPEST
CPEST
CPEST
PEST
PEST
PEST
PEsT
PEST
PEST
PEST
PEST
PEST
CPESTY
CPES?Y
PEST
PEST
PEST
PEST
PEST
PEST
PEST
PEST
PEST
PEST
"EQ‘
PEST
PEST
CPEST
CPEST
PEST

ALFE g (PHOP (MPya!') o (PNRA(MP<14N) sPURH (MP g ] «N) # (DREF=RHOP (MP42/N)PEST

1)) (PREFaKMOP (MPo2eN) ) ) /DREF
ALFesAMAX] (AL F&o1,)

NS = ALFROURFF

GO TN (112h001128,1130) NPRM

CALL FUSTI(N,oNSePSsV,CIoDPDDIUPNEY)
GO TN 1134

CALL FSA(1s5,44CUe0So( e oPSeDPNDJIDPDEY)
GO Th J17%

CALL EuSTPF {1,540 3CJeDSeN,ePS)

PST & FR/ALFCeF

YAUNM = YAQDPR (MP 41 oM)
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PEST
PEST
PEST
PESY
PESY
PEST
PESTY
PEST
PEST
PEST
PEST

46)
462
463
464
465
466
467
468
469
470
471
472
473
476
415
476
477
478
479
480
4R)
482
4R}
4Re
4RS
ARG
87
488
4R9
490
491
492
493
494
495
496
497
498
499
$¢c0
S0
502
%03
506
So05
506
S07
508
509
510
511
S12
513
516
515
516
%17
518
519
520
521
S22
523
52¢
528
526



C oo
1140

1141

1143
1148
1147

1149
1188

1160
c

C oo

1170
1172

1174
1174

1179

1180
1300

1

1

SUBROUTINE PEST (Continued)

GO 0 )1nM PEST
CPEST

CARKCLLeHOL T MODFYL, oo CPEST
FNEV = 1,0 PESY
IF (PREF JGT, RHOP(MP&¢N))IGO TO 1163 PEST
UNEW = RO 8 PREF/PHNS PEST
IF (anpw (6T, 2e01o/APC(MPeN)) BNFW 8 1,00 58 (HPa] ,/APC(MPyN)) PEST
MY g A PESY
Bl & HEeNEL(MPoN)Y#ALOGIEPS (MP¢N) «BNFW) PEST
HNEW 8 AVIN]Y (RNFUe (R)aRNEW) /(14 oDEL (MPN) / (EPS{MPoN) <RNEW) ) 00 4 9999PEST
9999) PEST
NW & MNwe! PEST
AW g My PEST
IF (AHS(RNEWaR])) 0T, 1,F=6 JAND, Ak LT, 10,) GO TU lle) PEST
'S s UKEF/HNFW PEST
GO TA (116991167,116449) APRM PEST
CALI FUlRT(0,44NSePSaMyCUaNRPLNJIPDE ) PEST
GO YO JI8S PEST
CALL FSA([145,MeCe[1Ren, oPSeNPLLJILDPNE ) PEST
GO0 Tn 188 PEST
CALL EUSTPF (148019 JeNSet)o9PS) PEST
FST g FSOHNE Wb PEST
60 T J1rA PEST
CONTYINUF PESTY
CPEST

HERKMANN ReALPHA, o CPEST
vgl = v, PESTY
UC & KRRUS®(PARC (MP o1 4H) #F JEQSTOMOl ) /TF PEST
UC & RNOG® (], e TSNEIN(PORC (MP 4] oN)SF JEQSTG ®DCRF (FQSTCMy PEST
ENQTIMFURTGM ¢ FUISTAMGE WS THAGFNGTFU RHOCENSTNMGF) ) PEST
IF (PC 41 T4 N) GO 10 1104 PEST
DY 3 PROP(MPo 1 oN) /TH @ (), ePURA (MP o 14N} ZAK (MP)) PEST
ALFY = 1./7(NYSTF/MHOSePORA(MP ] yN) #F /EQRTCM) PEST
UV s APAY) (DoY) PEST
DYV s uY®ALFY/UD PEST
NCY = LE/ND PEST
HB] 8 (LCN=YN)®ED/ (B[ FY = ],) PEST
K2 8 NChekl/2, PESTY
ALFE 8 KO=SUNT (RP#F2.NCDOUCNR]) PEST
DS & ALbe®)D PEST
GO TN (1)170e1172¢1174) NPRM PEST
CALL FUSTIE oN&4PSelieCIeNPDOJNPDEY) PEST
GO TN 17K PERT
CALL FSA () e5eMeCUsUSIF PSS DPONYDPIE) PEST
GO TN J)1IR PEST
CALL EUSTEP (1 499MeCU4NSIE¢PS) PEST
IF(n ,6F, DY) GO TU 1179 PEST
NDYU s pYeALby/D PeST
LEL = LC/D PEST
Bl 8 (UCN=LYN)®@D/ (21 FY = 1,) PEST
H2 = DLDeKR1/?, PEST
ALFR & KO=SONT (HPOH2NCN®LCN=KT) PEST
kST = F&/ALFR PEST
IF (pEL LT, BPSTY GO TH V13I0N PEST
PJ s PSY PEST
CONTTMUF PEST
PJ s Pel PEST
IF (»8) LT, PFL)Y PJ = PST PEST
CPEST

COMPUTE «F L ATTIVE VOTD VOLIME,, (RVV) e CPEST
cPesT

PTHSTSOF (1 ok 18HHOS/N G FRSTGMO®RHOSOE JEUSTCMIEWSTDMEGSTSMeEQSTGM, PEST
EONRTHMGEUSTEM o PHOS JFOSTNMoF ) PEST
IF (PJY JME, P,) RVVEAMBXY (la=PJ/PTHel,) PEST
IF (M) oFUs A.) FVVRAMAXI (Ogsl,=0/PTH) PEST
ALFex],/()e=PVV) PEST
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s27
S2e
529
S30
$31
532
$33
53¢
538
536
537
538
539
540
Sel
542
543
Ses
545
846
547
548
549
580
551
6§82
583
554
S5
5%6
587
558
569
$560
Sel
Se2
563
564
S65
566
567
568
569
570
ST
572
51
574
5715
576
517
578
579
Se0
Sel
S82
LLk]
SHe
SAS
Sk6
SaY
588
Su9
590
S91
%92



c
C eooe

c
1310

c
C oo

1320
1

C oo
1340

13401
13403

13s)

)

)|
1342

SUBROUTINE PEST (Continued)

IF (ASTY €0, (o) ASY]l = ALFS

IF (PEL ,6T, PST) GO TO 12310

IF (In NE. SR S) 60 T0 1900

PVYV s 0o $ H = S8R S $ GO 10 l9vne

NYNAMTIC PoF&SURE,

KCRNeK(D (MP)
IF (H ,FR, 50 R JANDs KRD(MP) (NE, U) KCRD = KRD(MP)
IF (KCKRD «GT,1) &0 Tn 1320

MO HATE=DNFPENNENCE,
IF (W ,FU, & S) H & BR S
60 ™A )Qper

PESY
PEST
PEST
PEST
CPEST
oee CPEST
CPEST
PESY
PESY
PEST
CPEST

ae CPEST
PEST
PEST

PELRaTSOF (1 e PFL *PHUS/NIEQSTOMORHOSSE +EUSTCMIFQSTNMoEQASTSMIEOSTGMy PEST

ENSTHM FUSTFMyRHUS s FOSTNMYE)
IF (PEL (NE. ro) ALFLSPFLS/PEI
IF (PEL ,EWen,) ALFL®PFLS/0
ALFeD ® (ALFcaAST]) /DT
ALFiN s (ALFL = ALFD)) /DY
GO TN (1900+1340,13RNy1440) xCRD

| INEAR VIGCOUS vOIN COMPACTION,
VVE s l..‘l/AL‘L
DV s DVO 8 1 ,/0=),/D0LD

PEST
PEST
PEST
PEST
PEST
PEST
CPEST
ee CPEST
PEST
PEST

NLONPeMAY ) (1, 4 =DVREQSTCMED/AMAX]) (PSTP)I/ALFOP R nd J*TER(MPy J o N) ®DTPEST

®(papST1) )}
VOLN & 1,7001n & Vgh = (1e=RVV])/DOLD
NTRY = 0
RVVL s Rvv]
PTHL = PTHQ & PSTI®AcCT]
PSO 8 aMAX) (P4PSTI1)/(1l.=RVV])
IF (PS11 LT, ") PSOSPTH| =P THO=Q,

PEST
PEST
PEST
PEST
PEST
PEST
PEST

IF (Vo= RVV] @ 1,/AST1 oLTe Me  oAND, PSO 40T, PTHO) GO TO 13en] PEST

HVPO = =)/ (PNLDSEUSTCN)
DRVP = n,
GO TN 13403
RVPA 8 (1.=RVV1e),/AST1)/DOLN/ (PS0=PTHO)
PRVP 8 (RVVeVVE) /N/ (PFLS=PTH)=RVPO
VETHN & 1,/ (NNLDBASTY)
lF 19571 .LF. [ .OR. PSYl .GT. P) PT"L'PTHOIPT“
DVSTH = (1,eRVV)/N=VSTHO
OVOP & (VVE/NakVVI/NOLN) /7 (PELS=PSO)
LUPIv & PTHaPTHN
PELV 8 PV/ALNOP ) VH & V0IL0 $ NIN = DELV/OVOSDT
A} g TER(MP 1 N)@NTN
REGIN DO { O0P FUR SUHCYCL ING
NO 1347 NL = 1 4N OUP
VH 8 VReNELV § KRATIO s (VHe]l,./70ULD)Y/Z0VO
RVP g KVPNeURVFPORATIN
VSTH 8 VETHOGNVSTHORATTO
PTHH 8 PTMOSNPTHORATION
FIRST ESTTMATE OF PRFSSUWF IN SOLIN
0P = AMAYY (D, 4PSN=PTHI)
X6 = ), ¥ 15 (NP GE. Oe) XG = EAP(A1®DP)

PEST
PEST
PEST
PEST
PEST
PEST
PEST
PEST
PEST
PEST
PEST
PEST
PEST
PEST
PESY
PESY
PEST
PEST
PEST
PEST
PEST

PLO u PTHH € PUP = PELH 8 AMAX]) (PyP&T1)/(1,=RVV]) e (PELS=AMAX) (P(PEST

PET1)/(le=RVVI))®RATIO
PSA o PELN ¢ 77 = RVVL®VH
IF (bTuM 6T, PEIH) GO TO 1348

PSJ 5 (PFLVOVS0eVSTHIPTHHORVP ¢PSORNVDP=RYVLEVH® (XGRS (],4A1/2,8

(«PTHHeFSOWPTHL ) ) o] ,) )/ (RVPeNVPPeRVVLOVHEXGEAY/2,)
NC g N
NC ® NCeo
OP = (AMAXY (n, oPS J=PTHH) ¢AMARL(0,¢PS0=PTHL)) /2,
26 = HVVI ®VH €& IF (PP ,GE. 74) 2G 8 ZGeFXP (AY®DP)
NDELVA 8 VSTHaVENeRVPH (PSY=PTHH) ¢DVNP# (PSJ=FSN) ¢ 2GRVVL®VH
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1340

1348
1340

1347

1348

1349
C oo
1380
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1388
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1398
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1420

C eo
1440

c

C eve

C oo

1

1
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SUBROUTINE PEST (Continued)

PSA 8 PS PESY
AC s NC PEST
IF (aRSI(NELVASNELV) ,I.T, leFeSovn Ok, (PSJ LF, PTHN (AND, AC PtsT
AT, 1,)) RO TN 134s PEST
IF (¢C JRE, 11) RO TO 134K PESTY
IF (NELVA 6T, OFLV) PILLO 8 AMAX]) (PSA,PLO) PEST
IF (DELVA (LT, DFLV) PUP s AMIN] (PSA,PUP) PEST
MAKE PNU FRYImMATFE OF PRESSURE IM THE SOLID PESY

IF (MO IMC2) LEN, 0) GO TU 1362 PEST
F8J & PS¢ (IIF| VeNELVA) / (RVPeDVNPeZ6GRAY/2,) PEsT
GO TA 1346 PEST
TMTekPOLATION FSTIMATE OF PRESSURE IN SULID PEST
PSJ = PSAC({DFLV=NELVA)/ (DELVR=DELVA)® (PSRPSA) PEST
CONT INUE PEST
IF (PSy AT, PUP) MS) & PUPe),ET? PEST
IF (PSyY Li, PLO) PSy = PLOe),E? PEST
IF (NC JFQ, ) GO 10 1345 PEST
IF (AHS(NELVASDELV) 6T, ABS(DELVB=DELV)) GU TH 1342 PEST
PSH & PSa ¢ DELVH = NEILVA & GO TO 1347 PESY
CONCLUSIOM OF |LLOP PEST
HVVL ® 2G6/VH & PTHL & PTHNW s PSA 2 PSO = AMAX) (PTHMsAMIN] PEST
(PFLKH¢PSA)) PEST
V80 & VHeZG ¢ FNT = ENT®VOIN/VH PEST
CONTINUE PEST
PJ 8 (leehVVj)@PcA ¢ RVY = RVVIL § GO TO 19¢0 PEST
PAOVICIUN FOR ABOKT FOR ITFRATIOM FAILURE PEST
NTRY 8 ATHYey & IF (NTRY 4GF, S) GO TO 1340 PEST
vOLD & VHelF|V & DNV 8 |,/7iev)LD PEST
MLUOP & MAK] (3,9=2e *ONTRYSUVSEUSTCMOL/AMAX] (PSToP) /ALFe0,8) PEST
60 vn 1) PEST
WRITF(042349)MeP (DVDELVAJDFL VR PEST
GO TN )3ab PEST
CPESY

PORRM T MONEL = DYNAMIC, e® CPEST
ALFD = TEM(MP M) SALFLD *AST1 +ALFSD®(DT=TPHIMPyN) e (ALFD]=TPH( PEST
MR N)SALI LN=aASTY e TPH (M ¢N) ®ALFSD) #EXP (a1 T/ TPH (MPN) ) PEST
DS w ALFDN®D PEST
60 TO (11R5,1360,1396) NPAM PERT
CALL FUSTI(E«NS P& oMeCJINPODJNPDE.N) PESY
GO 10 Jann PEST
CALL FSAI1e5 MeC.aeDIS4EePSIUPDNJIOPNFY) PEST
GO YN J4nD PESTY
CALI EWSTHE (1,590 eCJeDSeF oPS) PEST
PJSAMIN] (PEL s AMAX] (PSTPS/ALFD)) PEST
PSISTSUE (1P JORMHNS/DFOSTGMORMOSHE ¢EWSTCMIEUSTNN yFOSTSMIEUSTRM, PEST
ENCTHMFOSTEMoRHOSFNSTNMF) PEST
IF (PJ Nbe 7,) BYVEAMAK] (Oesle=PJ/PS]) PEST
1F (PJ oFle r,) RVVEAMAX) (Usele=N/PS]) PEST
CONTINUE PEST
GO T0 900 PEST
RUTCHFR PoALPHA=TA() ee CPEST
CONTINUE PEST
RTISTYPH (FPyN) ® (ALK =ALFR) /NADP (MP¢N) / (PEL=FST) PEST

ALFNS (L (ALFL=rLFDY)®RT/NT=ALFQeALFN] ) ®FXP(NT/RT) sALFSa(ALFL=ALFN]))@PEST

HT/DY PECY

1F (ALPD LT, ALES) ALFD m= ALFS PESTY

IF (ALFD 6T, ALFL) ALFD = ALFL PEST

GO Th 1202 PEST

CPEST

TENSTIE PaTH, ese CPEST

€TAITC FRAATUWE THRESHOLN CURVE, e*e CPEST

¢ CPEST
1500 KTSg = RTS(MP) PEST
IFikTSy E0G, 1) KTSS = KCS(MP) PEST

NS> PEST

B0 TP (1%2041560,1560) KTSS PEST
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SUBROUTINE PEST (Continued)

c CrEST 728
C oo CONSTANT CTREMGTH, oo CPEST 726
1520 PTH u 1FR(MP,S,N)OF PEST T27
PST 8 LOPTH® (1, /RHUSENSTRMOF/EQSTCM) / (], ¢PTH/EQSTCM) PEST 728

GO Tn janr PESY 729

C CPEST 730
C oo FRACTIPE MECHANICS, oo CPEST 73]
1540 GO TN 1%20 PESY 732
C CPEST 733
C oo CARKO| LekOL T THRESHMOID STRESS, oo CPEST 734
1560 PST g ¢FI. PEST 738
IF (NRLF ,GT, WHOP(MP8yN)) GO TD 1600 PEST 736

ANEW = KP 3 NREF /RHOS PEST 737

N g ¢ PEST 738

1565 H1 & FEeNEL (MPIN) #A| OG(EPS (MPyN) «BNEW) PEST 739
BNEW 8 AMIN) (RNEVe (H]1aKNEW) /(14 ¢DEL (MPoN) Z(EPS(MPoN) =ANEW! ) 00,9999PEST 740
19999) PEST 7}

AW g Mpe PEST 742

AW & N PEST 743

IF (MRS (ANEWR]) (GT, 1,Feb AND, AN LT, 10,) GO TO 156% PEST Tas

0S s DKEF/KNEW PEST 745

6O TP (1&RTPy1572,1574) NPKRM PEST 746

1570 CALL EUST(0.oNSePSIMaCJeNPONIDPDEY) PEST 747
0 TN 18ar PEST Teh

1572 CALL ESA(145¢MeCJsNR40,ePRIDPUDI«DPNE J) PEST 749
GO YO 1SRN PEST 780

1574 CALL EUSTPF (145¢44CJeNS90,0PR) PEST 751
1580 ST o FSeHNFwef PEST 7852
IF (PS1 ,GT, PR) GU TO 1600 PEST 783

PST = »e PESY 7%

IN » &K < PEGT 78§

IF (PEL 6T, P&) GO TN 1400 PEST Tus

+J s P PEST 187

H 8 &R S ¢ WV s ', PE]Y 7%A

GO TH jonp PEST 789

1600 PJ s Pl PEST 760
IF (n NF, &p S) M = Sk T PEST Tea)

IF (7FL LT, PST) N & SR T PEST Te2

IF (pPFL LT, PST) PJU = PST PEST 763

c CPEST Tes
C oo COMPUTE RFEIATTIVE VOID VULIME  (RVV) oo CPEST Y65
C CPEST 766
FTHRTSUF (1 4P JeRHNS/D yFNSTGMERHOSHE JEQSTCMEWSTOMFOSTSMIEQSTGM, PEST Te7

1 EDQRTHV FUSTFM o RHOS FNSTNMF) PERT 768

IF (PJ HF, A,) HVV & AMAX] (0 ,0],=PJ/PTH) PEST 769

IF (PJ Fliy, 5,) RVVEAMAX] (Uosle=D/PTH; PEST 770

ALFe 8 1,/7(),=RVV) PEST 771

IF (uvv ,GT, TER(MMsTeN)) GO TO 2000 PEST 772

1¥ (PFL Gk, PST) GO TN J9y0n PEST T73

C CPEST 774
C oo NYNuMIC TPASILF PRFSSURE. ®® CPESY 775
c CPEST 776
“TUD 8 KTIN(MP) PEST 777

IF (xTLD kW, ) XTDD & KCD(MP) PEST 778

IF (kTUD JEG, " JAND, XCDOM (FQ, ) KTNL = 1 PEST 779

GO TN (1A1541620416A0) KTDL PEST 78¢

c CPEST 781
C oo N0 KATE DFPFNNAFNCE , ee CPESY 782
161% PJ = PST PEST 743
GO0 Th 618 PEST 784

c CPEST THS
C oo N, Ay G4 NIICTILE FRACTURE MODEL, ee CPEST TR6
1620 NV & DVO & 1 ,/Ne) /7DOLN PEST TR7
VVE 21,=PFL/TRAF (1 yPELORHNS/NEQSTAMORMHOSEE sFOSTEMGENSTOMIEQSTSM, PEST 788

1 EOGTOMFOSTHMoFQSTEMoFHOSIENSTNM,GE) PEST 789

1F (AST1 .EG, n,) AST] = ALFS& PEST 790




SUBROUTINE PEST (Continued)

PELSE 8 PFL/ (Y ,oVVF) PESY
NLOOPEmAX) (1,,=DVEEQRSTCMON/AMIN] (PSToP) ZALF*0.Rsa,*TFRIMPs] oN)®DT PEST

1 ®(peprrl)) PEST

vOLD ® 1,700IN €& V&0 8 (),=AVV])/DOLD PESY

NTRy & 0 FESY

WYV ® KVYV] PESY

PTH. & PTHO g PSTI®AST) PEST

PSO = AMINL(P4PST])/(],=RVV]) PEST
IF(peY]l 6T, A,) PSO=PTH_sFTHORD, PEST

IF (VY,o PVV) « ],/7ART| LGTe N,eAND, P&U LT, PTHO) GO TO 16201 PESY

ORVP & 0, PEST

RVPO 8 =1,/ (NOLDEEQSTCM) PEST

GO Tn Ja2N0) PESY

10200 RVPN 8 (1,okVV1ai/7AST))/DULN/ (PS0=PTHO) PEST
PRAVP B {PVVeVVE ) /N/ (PFLS=PTH) «RVPO PESY

16203 VSTHN 8 )./ (PNLNEAST)) PEST
NYSTH & (),ePVV)/NeVETHO PEST

OVOP & (VVE/NakVVI/COLN) / (PELS=PSO0) PEST

IF (PS)) EQ, G(1a «OR, PST) (LT, P) PTHL 8 FTHO = PTH PEST

DPTH s PTHaPTHO PEST

1621 ODELV & PV/NLNOP & vW 8 VOIND S DPIN & DELV/DVNEDTY PEST
Al & TEP(MPy1M)eDTN PEST

c AFGIN DO LNOP FOR <UKCYCL TuG PEST
1O 1632 NL ® 1N OOP PEST

VH 8 VHeNELY & RATIN s (VHe]l,/DULD)7UVO PEST

RVP & NYPUICDRVPORATIN PESTY

VETH 8 VRTHOeNVSTHORATTIO PESY

BPTHN & PTHOONPTHORATIOD PESTY

¢ FINST ESTTMATE OF PRESSURF IN SOLID PEST
DP a AMINI(N, PSA=PFTHL) PEST

lo [ ] l. YN B ), PE;T

1F (NP L,GF. r,) 6O TO 1672 PEST

XG = ExP(Alonp) . PEST

AN & FXP(OP/TFR(VPoA(N)) PEST

1622 PLU & FTHH &« PUP B PFLH = AMINL(PePST1)/(],=RVV]) e (PELS=AMINY (P,PEST
1 PET1)/(]l.=RVV1))®RATIO PEST

720 w HyVI®VH § 7 = 0, $ PSA = PELH PEST

IF (PThk LT, PFLH) G0 TO 1639 PEST

PSJ m (NFLVeVENaVSTHPTHHORVP sPSNENV P aRYVLOVH® (XG® (],4A)/72,@ PEST

1 («PTHHePSOePTHL) ) =], ) =TER(MB g8 yN) SVHEDTNOAN® (| = (PTHHOPSO=PTHL) /PEST

2 2,/TER(MPea¢N) ) ) /7 (RVPeOVUPSRVVLOVHEXGRA]/2,eTFR(MP,B84N) ®VHODTN® PEECT

3 XN/2./TER (MR HeN)) PEST

M s n PESY

1623 NC & NCo PEST
DP o (AMINL (A, ¢PCJaPTHH) 6AMIN] (0, 9PSO=PTHL)) /2, PEST

76 3 RVWLOVH $ ZN = 0, PEST

IF (WP (GE, A,) D TO 1624 PEST

26 = ZLOFXP(AVYENP) PESY

IN & TER(MPIAN)SYHONTNOEXP (NP/2,/TERIMP A oN) ) PEST

16024 OELVA 8 VSIMaVSOSRVPR (PSJ=PTHH) ¢DVNPE (FS JaPSO) ¢ 7GaRVVLEVHOZIN PEST
PSA & P&y PEST

AC & ML PEST

1F (8MS(PFLVADEI V) L1.T, 1oF=%®VH Ok, (PGJ ,GF, PTHH oAND, AC PEST

1 T, 1,)) 0 Tn 1630 PEST

IF (nC 46F, 1) GO TO l6ar PEST

IF (NELVA LT, DELV) PLO = AMIN]L (PLO.PSA) PEST

1F (DELVA «GT, DFLV) PUP s AMAX] (PSA,PUP) PEST

c MaKE 2NU FQTIMATE OF PRESSURE IN THE soLln PEST
IF (MOP(NCe2) FN, 0) GO TU 1625 PEST

PSJ 8 PEJS(DFLVeNELVA)Z (RVPONVDPeZGOAL/2,¢ZN/2,/TER(MP6yN)) PEST

GO TO 1626 PEST

4 INTERPOLATION ESTIMATE OF PRESSHRE IN SOLID PEST
1625 ©SJ u PSA¢(DELVeNELVA)/ (DFLVR«DELVA)® (PSA=PSA) PEST
1626 1IF (PSJ LT, PUP) PSY s PUPe],E? PEST
IF (PSy BT, PLOY PS5y & PLU=],E? PEST

IF (INC ,FG, 1) GO TO 1627 . PEST
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1627

1630

1632

163%

1640

1643

1660

C oo

1800
180%

1810

1018
1840

18%0

1888
1860

C oo

1900

1910

2349
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L x.2 o ecs >l 2t e = ~
SUBROUTINE PEST (Concluded)
IF (ARSINELVASNELY) ,GT, ABS{DELVB=DELV)) GU TNh 1423 PEST
PSH & PSA § DELVH ® LELVA PEST
GO TN 1K) PEST
CONLLISTON OF L UOP PEST
WYVL = (7GeZN)/VH & PTHL & PTHH s PSASPSO=AMIN) (PTHHoAMAX) PEST
1 (PFLRNPSA)) PEsST
V80 = vHe2(Ge7h PESY
FNT 5 ENTOVOLN/VHOTFR(MP o4 oN) SEXP (NP/2,/TFR(MPAN))®DTN PEST
CONTINUF PEST
tJ 8 ()e=RVV|)®PcA PEST
WYY g KVVL PEST
IF (avy GV, TFR(MPaToM) ) GO 10 2000 PESY
(0 TA )9a0 PEST
PROVIGION FOR ANNRT FOR ITERATION FAILUKE PEST
MTRY = MTHYe) PEST
TF ¢ ITRY oGF, S) GN T 1643 PESTY
VOLN & VHeLtly & Dv 8 |,/DeVOLD PFST
NLONAP B MAXY (1o0e2:®0l:TRYSUVEEYSTCMO/AMIN]L (PST(P) /Al Folb) PESY
G0 TN 1621 PEST
WRITF (02349 WP NVINFLVAJELVR PEST
60 TN )AC PEgT
REeJITILE FOACTHRE ANMN FRAGUENTATION, FEST
GO T 9601 PESTY
CPEST
enLIN AAND PORNUIS MFLT AND SOLID REMAVIOR oo CPEST
CPERY
GO TN (1RFSIHTI0N,1B)E) MNPRM PEST
CALI FUSTI(E eN¢PSet el o NPIINJWDPDEY) PERT
GO TN kAN PEST
CALL FSA(LeS meCoNgFoPReNPUNIWNPHE Y PERT
GO 1A JRar PEST
CALL FULSTHF (14Se1t9CoNot oPS) PEST
IF (W 0, & §) GN Tn LASA PEsY
IF (F LFixe N,y GO IO 1R&: PEST
PJapeIskFl vk PEST
6O Y ]ﬁt" PF;T
PJ & PST = PF| = AMAX] (€ 44PS) PEST
IF (PJ oRT, =) &0 TO 1868 PESTY
FTH o YSOF (1, PJORMNG/I'e FUSTGMORMNSEE, FOSTOM, FOSTNRMe EQSTSM, FEST
1 EURTGMe FHSTHMy FUSTFMe RMOQ, EQSTNM, £) PERY
HVVe APAYI(N,y |, = N/PTH) PesY
N B e ~ VEST
GO T 1R&r PEST
HaSR e ¢ |yve", PEST
IF (PFL LT, 74} GO TO 14500 PEST
CPEST
FrOING RONTING, oo CPEST
CPEST
E 8 Foyu R0 (PabPy)etl]l,/Nal, /7DOLN) PEST
[ N PESY
1IF (F NFo P,Y REOI(FOSTCMOF#))OTFLPRRAUGE (] ,oFLK (MP)) )/ (EQSTCMOF=PEST
1 PepLn (s PEST
IF (F JFiy 0,) RHOIENETF PEST
HHOTmam T (RuD] e QH(OS) PEST
PST1aPST ¢ ,i&T1mALFS PEST
HETIUN PEST
FRAGMFNTATTION, PEST
PaPeTieT. im0, & PRHOIsi®TF PEST
AVY g <ARS (KyV) PEST
48Ty = 1,/7(1,ekVV) PEST
H 8 &R 2 PEST
RE Tyee PEST
FORMAT (& TTERATION FATLUPE eMue]? @ raet' 10,30 NVeeF10,39® OFLVAPEST
1 SeF)(.%e® NFLVPROF1I( D) :gs:
3
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3
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N
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APPENDIX B
”"
INVERSE SOLUTION OF THE MIE-GRUNEISEN EQUATION OF STATE

At several points in the PEST subroutine it is necessary to find
solid densities, given the pressure and internal energy. Th: subroutine
described here for determining these densities is called TSQE, The
pressure used may be either the pressure in the solid or the pressure
in the porous material. In either case a direct solution for pressure
is unobtainable so iterations are required, The foilowing form of the
Mie-Gruneisen equation is used

2 3 Tw I
Ps=(Cu,+m +Su.)(1-2)+]"psE (B=1)

he =0 /P =1, F ompressio the product T
where u s/ o or compre n (ps > pso)' p Pq
is treated as a constant Topso and T™/(1 + yu). For extension, T
is treated as constant, and D = S = 0, If the pressure P in the

porous material is known instead of PS, the following relation holds:

Pp Ps(qu)

sO ’
= = -2
5 I+0 Ps (u,E) (B=-2)

Since variables on the left are all known, the same kind of iteration

procedure is used to obtain y here as for Eq, (B-1).

The iteration scheme used is a combination of regula falsi and
Newton-Raphson, A first estimate of |, 1is made from a linearization

of Ps(u,E) or P;(p,E).

b, = 2080 (B-3)
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Pp_ /p-Tpo E
80
m i 0O 8O (8-4)
1 KS

Then the right-hand side of Eq. (B-l) or (B-2) is evaluated with
= “1 to obtain P81 or P;l. The next computed value of u 1in the
solution of Eq. (B~-1) is

Po1 ™ Pei-1 %)
2(__)

By Ty
where the second term on the right is the Newton-Raphson part and the

third is the regula falsi term, Equation (B=5) is used to compute

successive iterations of |, until the difference between ui+1 and

™ is sufficiently small,

Four paths are shown in the l1listing of TSQE, corresponding to
whether solid or porous pressure is known and whether density is greater
or lass than oso. The nomenclature is given below, follioved by the

listing of the subroutine,

Nomenclature

IP Indicator

0 Solution for y with the solid pressure known

1 Solution with the porous pressure known

PP Input pressure, Ps or Ppso/p, dyne/cm2

GRE rpsoE' an input quantity, dyne/cm2

c,D,S Coeffiqients of the Hugoniot expansion, dyne/cm2
G Grllneisen ratio

EMU b = ps/pso =]
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FUNCTION TSQFE

FUNCTIUN TSUF(IP PP IRREICIVISIGINeFSIRUS EMIF) TSQE

C (R £17]3
Coo CALLIY ATERG MU NR PTM FROM KNOWN PRESSURE AND ENS RELATION, eoC TSQE
c 1P & ne IMVERSKF EOS, IP 8 1o INVEKSE F0OS FOR PYH = ALFA®PSRY, CTSQE
(4 CTSQk
MC 8 N ¢ PAw FMUD m 0, S G2 ® G/?, 1SQE

Amlxy TSNE

1F (LFGVAR(AY (NF ) 1Xvsn TSQE

IND 8 el TSOE

1F (PP JLEe RRE) IND 8 [wie? TSAE

Fuuy = (PPehoE)/C TSOF

[} NC & Mo TSOE
GU TN (1nrelShy2ne28) fui TSQE

(4 PATH EON ,OMPRFSSINN o SOLIN PRESSIINE KNUWN, ae CTSOQE
10 "MU g | et MUY TSQE
PH 8 FMULYS(CoFMIN®(NeFMUI®S)) TS0E

Fl 8 GREFHE () ,=rP29EMy)/aMl) TSSOk

FMUD 8 TQRUE u FMiile (PPaP1)®(0 .5/ (PHYGI/WMII24 (CoFMULI®(2,%DeFMUI]@ITSOE

1o 9€))0(1,=G28FMII/WmlI) ) e, Re(FMUIafMI)) /IPlaP0)) TS0t

GO TN 3¢ TSQE

c PATH FUH FUPAMKINN o SOLTIY PRESQRURF KNOWh, e CTSOE
20 wWMUs 1, oF U] TSAE
glsungewrl) TSOF
SNEENK ) (W) TSOF

K28Me (y=H) O8N TS0E
SABEXP (L MOFMIIL Syt 08D T80E
SIBFLFEO(],.=C6) TSOE
Plsecregend TSNF

IR BRI PCP20€T6C ) /2,8 (Gar) /S IG5 | 0G20F QBS54 /uMieeIe (] ,=FMUL) TS0E
EMUIgFmliY e (PRab ) 7PN TSOF
EMUZARAXY (=) s o) FaRenCeaMINY (FMI1242]) E=neNC)) TSoF

60 TH S0 TSGF

(4 PATH FlOk FOMPEFSSINN = PNRMNIC PRESKURE KiNKM, e CTSNE
15 MU 3 ], eF N 1S0F
ETA & [ eaf20puit) swtily 18nF

M o FMLIYO(CoFMUL® (NeFnisl88)) 1SNE

Pl 2 (FHOFTALRWE) /wri TSOE

EMUD 8 Frllle (PE=P))®(r b/ ((ETAR(COFMLII®(2,%0eF M ) 030Q) ) =P |=PneG2/ SOF

1 wpeeeR)/wMil) o S8 (Er1 ] aFMIM) /(P1aP{)) TSOE

0 T 3n TSOE

( PaTH Ok EXPALSION = POKCYS PR &SLRE # v0aN, ae CTSOL
28 wMU = f,efPINY TSQF
SEBENNT (v i) TSak

K28y (uk) OGN 1S0E
SABFXP (FM®L MY /Wh 1 |00p) TSuk
CIBFafH® (1 e=Ce) 150t
FlapngeceqQ TS0t
LHPUMISROG/2 @ () ®§3/CNePUSHEZOFSaGe® () ,=EMII]) /WHlI1®e] TSOE
EMUZgF MY ¢ (PDQB ) Z0P N TSQE
FMUDZAMAY ] (o) (o] FalaNC gAML} (FML2ee] ,FoREN()Y) TSOF

Ja CONTY TNYF 1808
I (20 AT, 11) BRINTY 324 P IPPyGRE ¢P) oMUP ok MU «FMUDGNCo 1 XX TSQE

32 FORNAT(® [FS8]1e8 PP GHEWP]IROIEIN, Yo EMUDEMU) b MIDB®IE)2,%¢® NCeTSNF
1 lyxze?213) TSQF

IF (M0 LFU'y 12) IXXmIXYe) TSAF

IF (Ixa 6T, 22) SINP TSnE

IF (PP MFy g ofhlly ARSIFMIZaFMUL) (Gl, Jebe=b®iMax] (AHS(EMUL) o1, ETSOE

1e3)y g YO 71 TSOF

IF (1BP FU, r, AU AFS(FMUDReEMII]) ol teb=30amax] (AHS(EMUY) o 1 FTSOE

1=3)) Gy T I TSQE

TSUE gt FUI2 1SAE

(1] IF (1P obGe 1) TRUEBPTHEPP®(|,¢EMU?) TSNE
IF(pp FN, Ny TEOFSRNKS (| 08 MI1P) TSQF.

70 HE Tiigen TSOE
78 CONTINULF TSAE
1 (NC LFU, 1) O TP 68 TSnE

1F (AHS (Prabp) 1 T, AMK(K]ebP)) #0 TC WO 1SQE

KO 8 Pl & Faur = Fmil) TSQE

80 IF (PP ,GT, GRF) Frali)sFMI? TS0E
1F (PP b, ROF)Y FHlU) N S50 (Fral] eEMIZ) TSNE

60 YO b TSQE

FND - TSQE
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APPENDIX C

PHILCO-FORD EQUATION OF STATE

This appendix contains a listing of the subroutine incorporating
the Philco-Fordlo equation of state, plus instructions for using it in
a wave propagation calculation,

The subroutine, termed EQSTPF, is called at two points in a wave
propagation code. The first CALL is from the initializing subroutine
(GENRAT in PUFF) at the point where material properties are inserted.

At this CALL, the original solid density (pso) and the Hugoniot parameters
(C, D, S, I') must be available in CCMMON, Additional material data are
read in directly by EQSTPF during the initializing CALL: they are not
available to the rest of the program, All other input and output variables
are inserted through the CALL statement. The CALL statement used in GENRAT
is simply

CALL EQSTPF (0,IN,M)
where the first parameter (NCALL) indicates initialization, the second
(IN) is the file containing the input data, and the third (M) is the
material number., During this CALL, the subroutine reads two cards and
initializes its internal array variables, These data cards contain

identifiers and 14 constants in the following form:

TI-PF 1 1.800E 00 3.970E 00 O, 1,750E 00 2,612E 10 1,49CE 10 1.170E 10

TI-PF 2 1,159E 11 1.060E 11 3,550E 03 1.160E 04 1,950E 03 4,790E 01 5.638E 00

The cards contain an alphanumeric title in Al10 format and 14 variables in
E10.3 format., The variables are Cl, DLM, DSM, D1, HLB, HLM, HSM, HVB,
HVM, TBK, TCK, TMK, WT, AND ZKO, These variables are listed for aluminum,

10
beryllium, and titanium in Table C-1 as they were taken from Goodwin et al.
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TABLE C-1 PHILCO-FORD EQUATION-OF-STATE DATA FOR ALUMINUM,
BERYLLIUM, AND TITANIUM!C

Variable Aluminum Beryllium Titanium
3
RHOS, p g/cm 2,71 1.85 4,5
e 2 11 12 12
EQSTC, C dyn/cm 7.72 x 10 1.203 x 10 1.016 x 10
2 11 11 11
EQSTD, D dyn/cm 4,908 x 10 8.212 x 10 7.222 x 10
2 1l 11
EQSTS, S dyn/cm 6.076 x 10 . =3.79 x 10 -5,.685 x 1011
EQSTG, T 2.11 1.15 1.09
Cl 1.80 1.80 1.80
DIM g/cm 2.380 1.690 3.97
DSM g/cm 2,537 1.808 (4.25)
Dl 1.75 1.75 1.75
10 10 10
HLB erg/g 3.020 x 10 8.983 x 10 2,612 x 10
10 10 10
HLM erg/g 1.061 x 10 4,976 x 10 1.494 x 10
9 : 10 10
HSM erg/g 6.658 x 10 3.674 x 10 1.170 x 10
11 11 11
HVB erg/g 1.400 x 10 4,202 x 10 1.157 x 10
11 11 11
HVM erg/g 1.260 x 10 3.925 x 10 1,060 x 10
TBK OK 8000 8000 11,600
T™K °k 932 1556 1950
WT g/mole 26.98 9.013 47.90
ZKO 5.626 5.626 5.638
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The second CALL to EQSTPF is made to obtain the pressure in a wave
propagution calculation, In SRI PUFF, this CALL statement is in HSTRESS:

CALL EQSTPF (1, 5, M, C(J), D(J), E(J), P(J))

The first parameter (NCALL) signifies that pressure is to be computed.
C, D, E, P are the sound speed, density, energy, and pressure, C is
unused, D and E are provided to the subroutine, and P is output,

A pictorial view of the EQSTPF is given in the simplified flow chart
in Figure C-1. The subroutine is actually in two parts: the first handles
reading and initializing and the second (beginning at location 200)
handles pressure computations, The second part contains three subsections.
The first of these selects the appropriate phase for material, the second
contains two functions for numerical evaluation of quantities on the
phase boundaries, and the third contains five sections for computing
pressures in each of the three phases and two mixed phase regions,

A nomenclature list is provided containing the input variables and
other principal variables of the subroutine. This 1list is followed by

a listing of the subroutine in FORTRAN 1V,
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BEGIN INITIALIZING

READ INPUT

INITIALIZE
e SET MELT DENSITY
¢ CRITICAL POINT VALUES
e EVO, VVO, PVO
e SPECIFIC HEATS
o MISCELLANEOUS CONSTANTS

y

BEGIN PRESSURE COMPUTATIONS

(=)

()
(=)
resr e -
(=)
(=)

SOLID

SOLID-
LiQuio

LiQuip

Liauio-

VAPOR

VAPOR

NCALL IS ZERO FOR INITIALIZING, ONE FOR
COMPUTING PRESSURE.

READ 2 CARDS CONTAINING MATERIAL NAME, AND
14 VARIABLES: C1, DLM, DSM, D1, HLB, HLM, HSM,
HVB, HVM, TBK, TCK, TMK, WT, ZKO.

COMPUTE THE MELT DENSITY TO BE CONSISTENT
WITH ESO. COMPUTE PRESSURE, ENERGY, AND Z

AT CRITICAL POINT. COMPUTE INTERNAL ENERGY,
SPECIFIC VOLUME AND PRESSURE CORRECTION AT
2ERO PRESSURE ON THE VAPOR TO LIQ'JID-VAPOR
PHASE LINE. COMPUTE SPECIFIC HEATS FROM THE
RATIO OF ENTHALPIES TO TEMPERATURE CHANGES.

TEST INTERNAL ENERGY AND SPECIFIC VOLUME
AGAINST THE ENERGIES AND VOLUMES ALONG

THE PHASE LINES TO DETERMINE THE APPROPRIATE
PHASE.

MA-2407-21

FIGURE C-1  SIMPLIFIED FLOW CHART FOR EQSTPF SUBROUTINE
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COMPUTE Ve ON § - 5L LINE

LOCATION 600 STARTS A SPECIAL FUNCTION FOR

Y

2

COMPUTING SPECIFIC VOLUME ON THE PHASE LINE
BETWEEN SOLID AND SOLID-LIQUID REGIONS FOR
GIVEN INTERNAL ENERGY. FOLLOWING COMPUTATIONS,

BOG CONTROL RETURNS TO THE POINT INDICATED BY
NPART.

AND oL EL ON L-LV

COMPUTE o E, ON LV-V

'

NPART

1
i
o LOCATION 650 STARTS A SPECIAL FUNCTION FOR COMPUTING
STATE POINTS ON BOTH LEFT ANC RIGHT BOUNDARIES OF THE

g L LIQUID-VAPOR REGION. CONTROL RETURNS TO THE POINT
INDICATED BY NPART.

3
| B75

4
s

5
—

-]
e

MA-2407-22

FIGURE C-1 SIMPLIFIED FLOW CHART FOR EQSTPF SUBROUTINE (Continued)
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COMPUTE P SOLID PHASE

COMPUTE P SOLID-LIQUID REGION

COMPUTE P LIQUID PHASE

I COMPUTE P '——D RET JfiN VAPOR-LIQUID REGION

COMPUTE P VAPOR PHASE

MA-2407-23

FIGURE C-1  SIMPLIFIED FLOW CHART FOR EQSTPF
SUBROUTINE (Concluded)
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e

NOMENCLATURE OF INPUT AND PRINCIPAL VARIABLES

A1, A2, (aa, Qb)
B, BP, (b, b’)

CBT, (C°T,)

CC
c1, (cl), D1, (dl)

DEDV

DLM

DSM

EBL

EBS

EC

ELO, (EZO)
EO, (E)

o
EQSTC, (C)
EQSTD, (D)
EQSTG, (I
EQSTS, (S)
ESO, (E )

so
EVO

Constants in vapor-liquid equation
of state

Constants in vapor equation of state

Average of specific heats at constant
pressure in solid and liquid phases,
times the melting temperature, erg/g

3
c_/d 27
( 1/ 1) %
Coefficients in the relation for density

at the phase line between the liquid and
liquid-vapor regions

3
(ELLO-ESO)/(VLO-VSO) = AEO/AVO, erg/cm

Density of liquid at melting and
atmospheric pressure, g/cm3

Density of solid at melting and
atmospheric pressure, g/cm3

Internal energy of liquid at boiling,
erg/g

Internal energy of solid at boiling,
erg/g

Internal energy at critical point, erg/g

Internal energy at atmospheric pressure
on phase line between liquid and solid-
liquid regions, erg/g

Internal ecnergy of the ideal gas at
zero temperature, erg/g

2
Bulk modulus, dyne/cm

Second coefficient of Hugoniot
expansion, dyne/cm2

Grlilneisen ratio

Third coefficient of Hugoniot expansion,
dyne/cm2

Internal energy at atmospheric pressure
on phase line between solid and solid-
liquid regions, erg/g

Internal energy of vapor at line between
liquid-vapor and vapor at zero pressure,
erg/g
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HLB

HSM

NCALL

P

PC, (P)
Cc

PVO

RHOS, (P )
o]

R1, (R)

TBK

TCK, (T )
c

T™

TMK, (TM)

v

ve, (V)
[}

VLO

Vo
VSO

Enthalpy of 1liquid at boiling and
atmospheric pressure, erg/g

Enthalpy of liquid at melting and
atmospheric pressure, erg/g

Enthalpy of solid at melting and
atmospheric pressure, erg/g

Enthalpy of vapor at boiling and
atmospheric pressure, erg/g

Enthalpy of vapor at melting
temperature, erg/g

Indicator in the formal parameter list

0 means reading and initializing
is required

1 means pressure is to be computed
2
Pressure, dyne/cm
2
Critical pressure, dyne/cm

Correction to pressure of vapor to force
a zero pressure point on the phase line
between liquid-vapor and vapor, dyne/cm

Initial solid density, g/cm3

Gas constant, 8,3144 x 107 ergs/OC/mole
Boiling temperature, oK

Critical temperaturc, oK

TMK/TCK, reduced temperature

melting temperature, OK

Specific volume, cm3/g

Specific volume at the critical
point, cm3/g

Specific volume of liquid atsmelting
and atmospheric pressure, cm /g

3
Initial specific volume of solid, cm /g

Specific volume of solidaat melting and
atmospheric pressure, cm /g
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vvo Specific volume on phase line between
liguid-vapor and vapor at zero pressure,
cm /g

WT Molecular weight, g/mole
2C+T

Y1l M \

Y3 2c.2c.T

M

zc, (Zc) PcV /RTc, compressibility factor at
critical point

ZKO, ZK1, ZK2, Constants in the vapor equation of state

(kg kl' k2)

ZM, 2N Constants in an approximate fit to the

PV-T relation on the boundary between
liquid vapor and vapor:

ZN

T
PV =1=-2M Q1 - —)
ve Tc

e ——cmr eemom
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L 1}

SUBROUTINE EQSTPF

SUBROUTINE LUSTPF INCALL o INoMoC Jo0ot o)

EUSTrF CUMPUTES PMNESSUKE FRUM A ThHrEE=PRHASE FUUATION UF STATF
DEVELOPEY KY PHILCO=FOKDe HUUTINE HAS TeU PARISe ONE UK
READING aND INTTLIALIZING AND ThE OTHER PUR CUMPUTING Pt SSUNF,

READ IMPUTY (NCaLLst)e CALL IS FNUm GENwAT,

INPUI = NCALLe INg My AND MATLRIAL PrOPEKTY CARUS

OQUTPUT = PRINTS (BKU IMAGESe ONGANIZES LAVA INTO AKKAYS
COMPUTE PRESSURE (MCALLse]) Call 1S FROM HSTHESS USUALLY

INPU) @ NeaLby Mo CJUs 09 €

QUTPUT » P (CURKENT PHASE Uk STATE UF MATFWIAL 1S AVAILABLE)

MAMED COMMON
REAL MUyMUM
COMMON /EWS/ EQSTA(R) sFWSTCLE)sEUSTDIO) sEGUSTE 1A) JELSTOI(D: o
1 EUSTHIO) sLUKSTN(G) sEQSTS(6) sEUSTVIR) sCLUIB) sCuLi(b) o2 (6)
COMMON /MFLI/ EMELT(H4h) oSPM L)
COMMON shMHU/Z BMO(6) +MHOS(H)
CUMMON /TGH/ TSHIAIIG) sFAMAT (Ae20) s TENS (DI}
COMMON /Y7 YO(6)aYALD(O) oMU L6 ) sy YALDM
DIMENS UM Al (A) A2 (8) sRIB) sBP (B L] (b sCBTIo) sl Ib)alVIalsli) el

FUSTHF
PLSTPP
EWSTPr
FUSTPP
EUSTHe
EWSTRE
EUSTPP
EUSTPRH
EWSTPH LY
EWSTPE L]
EuSTPy | ¢
ENSTPE ]S
PUSTPE o
EQSICUmE
EWSTCUM3
EWSTCuMe
EUSTCUMY
ELSTCUMe
EUSTCUM?
EQSTCUMN
EUSTCOMY
EUSTPE]S

€T~ T & Lh

I DEOVIe)«EoLi6) oFESIB) sECIO) oFESIA) +ELUIA) RO IR} EUVDIB) +EPS] (B) «EUSTPFL?

2 EPE2in) oESUIAIsEVYUIH) »RUCT LRI oPCIR) ePYO (B aTH (8] o ¥CIB)aVLUIR) &

EuSTPP 10

I VOIS aVE0IE ) aVYAIB) suT (o) oYL (B aYII0) v CIB) o ZmDIB) o 7RI el s ZRZ2IB)EQSTPHLY

& SINIBlaT™IE)
OATA ACLe HI /1.Eeby B,3146E7/

LAdd 44 BRANCH TO INITIALIZATION OR COMPUTATION PORTIONS
IF (NCALL LEU, )) RO TO 206
1211 7X) ascease
READ INPUY DATA AND INITIALIZE CONSTANTS
(YITY T (T YYY)
IND = Sn
READ(TINoLI0L) 219CL (M) oULMoDSMeD) (M) gHLEIHLMyHSM
WHITE(69110)) Z1oCl (M) oULMIUSMID] (M) sNLBINHLMIWSH
WRITE(641102) INDGIN
REAU(INQIIUL) ZIoWVBonVMoTBR o TCKyTMK quT (M) 42RO (M)
WRITE(60110)) Z1onVOINVMoTHRoTCRoTMKowT (M) ¢ ZKR( (M)
WRITF(601102) INDoIN
VU(M) 8 ]1,/HHOS (M)
ESO (M)snSM
IP (DS™ 6T, 6,) GO 10O 50
COMPUTE =nSme [F UNSPECIFIEUV
ERG & EuSTO(M)eRHNS (M) SESO (M)
EMU & ot RGB/Z(ENSTC (M) ¢ERG)
EMU & oERG/Z(EQSTC (M) o (EQSTD (M) oEQSTS (M)SEMU) ®f MUGERD)
NC2sp
EMUOU s tM)
NC28aNC2+}
IF (NC2 +GTs 2n) GO 10 &2
P u EMUS(EUSTC (M) oEMUS (EQSTU (M) sEMUGEUSTS (M) ) obHG) ¢E G
PP = EQOTC (M) oERGOEMUS (2, 8EUWSTD (M) 03I *EMUSEUSTS (M))
EMU s ErUF/IP
IF (ABS (LMU=EMIO) ,GTe ACC) GO TU &0
GU TO 4e
PRINT 1103+EMUOIP PPIEMUIM
STOP o2
CONTINUL
VSO(M) 3 vO(M)/(EMUe],)
60 T0 &y
ADJUST ~ESQ= 4 =VSU= TU AGHEE Ww]Th e)SMe

-
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EUSTPP Qv
EWSTPF2]
EUSTPEZe
EUSTPFZ)
EUSTPr 2o
EUSTPE 2%
ELSTPt 20
EWUSTPIZY
EUSTPH2E
EUSTPF2Y
EUSTPFIY
EQSTPFI)
EUSTPFIZ
EUSTPFII
EQSTPF 30
EGSTPF IS
EWS TPk 3¢
LUSTPEIT
FUWSTPFIN
EWSTPFIY
EUSTPF oL
EQSTPH )
FEUSTPh&2
EQSTPh &)
EUSTPF 44
EUSTPF&S
EWSTPFee
EUSTPF4T
EQSTPH &l
EWSTPE&Y
EQSTHFYY
EUSTPHS]
EUSTPESY
EUSTPES]
EWSTPF e
EUSTPESS
EUSTPFS6
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SUBROUTINE EQSTPF (Continued)

St ve0Ilr) = ). /18 EQSTPFS)
ErL 8 BM/ERGS (M) ], EUSTPFSn
ESN(F) & «kPLUSFUSTCIM) FMUR(EQSTL (M) eEMUSEUSTSIM)) )/ (BGSTG(M)® FUSTRPF 59
L MmO (m)el] efru)) EUSTPE G,

LI FLO(M) & FSULls) en| Vargwm EUSTPHO)

C CrmprUTE epLve JF UNSPECLP JEU EUSTPF o2
TP (UL¥ GLFs G,0LLM B (4,939/VS0(M) EWSTPFO3
VLO(M) = (/LM EUSTPP OG
TM(m) 8 TeRzTen EUSTPF &S
In & THRAZTCA EUSTPF 60
blk 2 mykanLn EUSTPFOT

c SULVE PUK oClLe PHOM Ely 3,¢) EUSTPP OB
CL 3 (RLkheNLM)/ (THR=TMK) EUSTPF B9
CviM) & (HVAemyM)/(TEReTMR) EUSTPF Ty
DLTC 5 LViIMery EUSTPF T}

c SOL vE FUR elle ¢ =A2e AMD <ALPHA® FRUM EUS, 3,24 EQSTPF T2
Al(M) & (1 1e/su)euwT (M) EQSTPF T3
Ag (M) 8 (FLoeNLTCOTER)/(K)STCR)®WT (M) EUSTPE Te

c enLyb FUuk =bKe FROM BU, 3,25 EQSTPF TS
28 Vh,sTHep 0THE0b=0, EWSTPF 7o
At 8 (Ag(M)/TReAL (M) e0,314259%X)/(],00,08340K) EQSTPF T
AZ(M) = AD(M) oAl (M) EUSTPF TH

C SNLvE FUK o/Ce FRUM EG, 3,27 EQSTPF 79
2C(M) 8 )1 ,/(3,72¢0.¢cb@®(ART,)) EQSTPFEO

c €nLvE FUN eVle FHUM EU, 3,33 EUSTPFB1
VC(4) 2 (140Cr (M8 (LeeTM(M))®8(],/3,)eD1(M)®(1,0TM(M)))/0LM EUSTPF B2

C SOLVE Flbk CHITICAL PRESSUkE =PCe FRUM BUWe 3,34 EUSTPF B
PC(M) & 2C(M)aR)I*TCR/ZVL M) /WT (M) EQSTPFBa

C SOLVE tw, Jobk FOM K] 8 BETAe COMPUTE BebP EQSTPFBS
H]l 8 13, EUSTPF Ho
”2 L] ‘.D"lo/?C(”)'l.’ EQS"’FB?
M3 8 2,c5/1C(1n)002a5,5//C(M)=0), 15 EQSTPF B

T0 By 8 wn) EQSTPF 89
B) B hleSnMT(H3e]l,/R])) EQSTPFOU
Ir (AMS((R]lebr)/B1) oGT. ACC) GO TO TV EQSTPFOI
B(M) 2 ((A.%m1=b)erje],)/(h]1®(3,%8]=]),)) EUSTPF 92
B (M) 8 (k]e3, )/ (3,%H])=],) EWSTPF93

c ChmpUTE =n0e o oK]le ¢ AND oR2e (EWSe 3,7} EUSTPr 94
TP (ZKOIM) okU, Lo} £LKOI(M) = E) EQUSTPFO5
N1 (M) & Hle/KQ(M) EQSTPF 96
ZR2(M) 3 (leo7K] (M) eR]=A)l(M)wAZ(M)) /2, . EWSTPF 9?7
EPSL(M) B fL(mM)OTCKOR] /wT (M) EQSTPF 98
EFS2(#) 8 TCRO(CV(M)ak]/WT(M)) EQSTPF 99
FU(M) 8 Myhely(M)eTBK EQSTP100

c SOLvE td, 3,2R FOR kv TU FIND EVOy PVOy DVOs vVO EUSTP10}
T = [M(IM) EWSTP102
PV 8 FXrP(a2(Mye(] el /T)sA)(M)SALOG(T)) EQSTP1 03
Rl 8 T/7.C (M) EUSTPL 04
A 3 7xQ (M)LK (M) /T EUSTP10S
AP 8 IR (M)®(Te),/T) EQSTPLO®

C SOLVE tue 4,5 FUN Ky EOSTPIO'I
Rv a8 pv/Xxy EQSTPl 08
NC3sp EQSTP109

ar KV] = Wy EQSTPL1¢
NC3ISNC I e} EQSTP111
IF (ANCY o6l 20) GO TQ K2 EWUSTPl12
X2 8 1= (HIM)apgP(r)®Ny])eRY] EQSTP113
PU 8 X1ORVI/XPe(AeAFrPHV] ) 0Ky ] ®a2 EQSTP]l ]
POP 8 X /X2¢(X1®RV])®(B(M)=2,HP(M)®RV]) )/ (X2%X2) = (2,%A¢3:%AP®RYV]) EQSTP]I1S
lery] EQSTP11e
HYBAMAR L (AV]e (PV=PO) /P0OPs) sE=]2) EQSTP117
IF (ARS(FVekV1) GT4uCCORV (AND, ABS(RV=RV]),6T,1.E=12) GO TO 80 €EUSTPl 1B
GO 10 6y EQSTP1 19

ae PHINT 11049RV14PO4PUPJRY M EQASTP) 20
SI10P A2 - EQSTP121
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10%

c
C
C
c

c
2uy
c
c

c

22v

SUBROUTINE EQSTPF (Continued)

Cunl Thug
CHLVE tuh, ae4Ce Do ALY E FUR EVe HLs EL

EusTP22
EUSTP) g3

EV B b0 (M) eePC2 (M@ ap bS] (m)®((LKYIMIe2,®ZK]{M)/T)aZR2(M)ORV/T)ORVEUSTP] 20

ML & J,eC1lr)a(],=T)%e(],/3s)0li(r)0l],=T)

EL 8 FVebPSL (1) ePue (] /KVa]l o/nl )@ (A2(M)/TeA)(M)e],)
Pl 8 fO (MY I N(M)EL

Evi(r) 3 sVelr1abU(M)

Fyi{s) 8 PV

Vviis) 8 vi(NMy/wy

EL(™) 3 §

QL yl buwe 6840 FOW wb(e WITH T 8 [0 Ky 8 )
RCU(M) 8 BOIM)GERS2(M)abPSL (M) ILKU(M)e2,®/K](M)elK2(M))
eV M) & (ELN(M)FSO (M) ) ZIVLO(M)=VSO(M))
PUVU (M) SDFIIV (1)

EFPC ) o VLIM)eLEI V(M)

( ) 3 (PLIMY /0] (M))e0 /0T,

C 7= £S50(M)I/7(TFKaPYN,)

* CT(v) & P56 (CleC>0)eTmK

CrTir) & ¢ 90 (CLe(SU)OTMK

EnL(M) 8 FLU(M)a(QU® MK

EnS(M) 3 +5U(M)a(l ®IMK

YI(®) &8 2,%CkT (M)

Y3(m) = Yi{M)a(CL=CHL)®ImK

CUNSTRULT A FIT TO aPEENXIMATE KVel RELATIUN ON LVeV HOUNDKY
Tlals»,vb

NFARTEYS

GU To onb

)any

1¢slz",y

NFAMY =me

GU 10 ayr

(% 11"

IN(MYE wlCGU(laom])/ () o=k2))/7BLUGI(],=TL)/{Lee12))
2M(M) &8 (Yool ) /(1 oT]) 00 n(M)

ne TURe

ese TYTYY
CALCHLATIONS TO FIND P(veE)

1YY YYYY Y
SELECT FEGION UF PHASE DIAGKRAMS

CUNT I~up

Ve |\, /v

SELECY Se SLe L UR L LVe AND V REGIONS
IF (v quf, VLN(M)) GO TO 3¢v

TES) FU~ ~QOUL SULTOD
1F (F LE, £SO(M)) GO TO 7oV

LA SOLvE Fum vS DA SeSL HUUNDAKRY wlTH ESst

¥Z 8 Fepk& (M)
EL = F
NPART = 1 % (O 10 €00
SFCUND BRANCH FOR SOLID MATERIALs CONTINUE wlTH SL ANV L
IF (v LY, v§) GO Tu 700
TFST FOr cOOL LIGUID
IF (F LT, eLN(M)) 6O TO 790

ese SOLVE FPUKR TEMP UF E AS IF E IS ON SLel LINE

YZ & Eophl (M)
T 8 (YgoSUNT (Y20Y2=Y3(M)) )/ YL (M)
COmpUTE £ FOR TF
€L 8 FS & LoS(M)eCHT(M)®TFeHOCT (M) /TF
GO 10 600 TO GEV vS ON S=SL LINE
NPART = 2 & GO T0 62
COmpPUTE VM OR SLel LINE
Vim & Ve (F=ES)/DEDV (M)
[ TS B |
SEPAKATE SOLID=-LIWUID AND LIGUID
IF (VeviLM) 75%,75S4010

1 HEGIN SWITCHING FOR Lo Lve AND V REGJONS
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EuSTP12S
EUSTP)26
EUSTP12Y?
ELSTPI2Y
EuSTPlZ2Y
EUSTPLIv
ELUSTP1IIL
EWSTP)32
FUSTP133
EUSTP13e
EWSTP1 35
ELSTP] 306
EWUSTP137
EWSTPLIw
EUSTPLI9
EUSTPlAY
EVSTPlA]
EuSTPl 62
EQSTPle3
EQSTPles
EUSTP16e%
EQSTPle6
EQSTPl&7
EQSTPl et
EQSTPl ey
EQSTPIYY
EQSTP151
EQSTP)52
EQSTP)S3

.EUSTP15e

EQSTP15Y
EQSTP1%0
EUSTP157
EQSTPLISE
EQSTP159
EQSTPl 6L
EUSTPl61]
EQSTPloe2
EWSTIPlOI
EQSTPl6bs
EQSTPl 6%
EUSTP160
EQSTPlO7
EQSTPl 6B
EQSTPl 09
EWSTP1 Ty
EQSTP17]
EQSTP1T72
€EQSTP173
EQSTP17e
EQSTP1TS
EQSTP1 70
EQSTPLTY
EWSTPL1TH
EQSTP)TS
EQSTPLO0
EQSTP16)
EQSTP182
EOCSTP183
EQGSTP18e
EQSTP185
EQSTP) 86
EuSTP1BY
ENSTP1 B8
EQSTP189
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SUBROUTINE EQSTPF (Continued)

IF (v LY, vC(™)) GuU TUu 35n
RWANCH POP MIGHLY VAaPUW]ZEL Malp )AL
IF (v L0Y, YVOI(M)) OO TL weU
COmPUTE EC(v) AT CRITICAL TEmF YO CuMPAME wiTw §
ECV 8 EUIM)GEPSZIMIcFPSTI (MI®((ZRU(M)og O K] (M) )®RVe/RP M) SKy®RY)
SECOMN FARTLIAL ISOLATIOM GF V PROUM (V KEGIUN
It (F ouT, £CV) GO 10 GUD
COMpUTE T AND TrHEN BV ON LVev LINE 10 MARE THERED TES) FUK
SEPRKATING LV AND V
VCiM)/V
xl RVY/ZI2CIMYR (] o (B (M)anP (M)ORy)ORY) ) a/KP(F)Snyee])
xe aZn0 (M) spyeRy
X3 8 (Zn2(M)OnVe/K] (M) )ORyORY
1"1" ® Lol
IF (X1 o6Ts €,0 oANUe X3 40Ts vel) THMINESORTtXI/X1)
FMAR 8 (FotLO(M)) "lEVOIM)epLOIM))
IFUV (Gle FMAXOVVC(M)a (] o=FMAR)®VLO(M)) GO TU war
1 s 1.0
PV B8 EXPIAZ2(MI®{]) o] o/T)eA) IM)SALOG(T))
N4
PVT = Py
NCASNCae])
1P INCO JGTe 2u) GO TO 317
TA s 7Y
PO 8 X1®Ten2ex3/T
PYvP & Pye (A2 (M) /TeAL(M))/T
PGP 8 AmAn] (0, eX)eX3/(TeT1))
T 8 AMAAL (TLe (PGPV)/ (FVP=P(OP) s TMINeACC)
1F (PVvPePGP oL'uC. ) 18TAe(o05
T 8 AMINY()eon BO®TACC,199)
Pr &8 EXPIA2(F)I8(] 0]l /T)eA)(M)®ALOG(T))
IF (ARS L (PVePVYT)/PV) 61, ACC) GO TO 31v
EV 8 FO(M)eEPS2(M) T PS) (M)® (/KO (M)eg # KL (M) /Tay/RZ2(NI®hy/])ORY
RRANCH TO EITRER v OR LV REGIONS
IF (Y oLE, IMIM)) GU TO Y8y
IF (E=Ev) ®90,900.900
PRINT 1 N6 TAPGIPVPIPGP TPV M
STOP 31¢

kv

TEST 10 SEFARATE L ANLD LV WEGLIUNS
FIRST CUMPUTE T ON LelV LINEs THEN EL
NL 8 2
IF (F .07, EC(M)) GU TU BOC
RL & vCim)/v
X1 8 (),=RL)/D)(M)/C,
X = SORI(X)I®X1eCC(M))
T 8 Je=t(XoRl)®0( 1,/ , ) (Aer])®® (] ,/3,))%e3
GO 10 650 TU OBTAIN EL
NPARY s 1
GO TO 650
RRANCH TO ETTHEKR L OF LV KEGIUNMS
NL 8 3
IF (E=EL)BS55:A559800

PUILTeIN SURKOUTINES

200000 ashoce

eee SULVF FOR VS UN SeSL LINE+GIVEN ES=t2

TF 8 (YeSURT(Y28Y2eY3(M)))/Y]L (M)
RGE = HROS (M) WEQSTGIM)@E7Z

DEN = EWSTC (M) eRGF

ENUM s LOVO(M)®(TFel,)eRGE

EMUia s 0,

EMUIR & EMUJA s ENUM/DEN

NClsp
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EUSTHES(
tWSIMPlY]
FWSTF 9y
PUSTFiIYY
tuSIriYe
PLUSTR 9N
twSHTP %
tuSTPlY?
EWSTPYn
EWUSTHI9y
FEWSTreuy
FuSTPcuU
EWSThelUe
FUSTPELS
EWSTPcUe
$LSTPELY
PWSTHeUD
LWSTPeU?
EwSTPELY
FUSTP¢OY
EWSTP2]y
FWLSTPEL]
EuSticle
EusSTP21)
FUSTRZL G
EWSTPELYS
EWSTRclo
tuSTIPel7
FLSTPCELS
tWSThRelY
tWSTPZEL
FUSTRZZ]
ELSTPCEe
EuSTP223
I AULTO
EWSTP2¢eY
EWSTheen
EWSTRZe?
LUSTRePD
tuSThkcey
FLSTPeI
EUSTPC3)
ELSTPZ32
EUSTPE33
EUSTPZ 36
EWSTPIY
EWSTP230
EUSTPe37
EWSTPe3b
EUWSTPZ23y
EUSTPcsy
EUSTPZe |
EWSTP2ag
EUSTPZ43
EUSTP¢eos
EWSTPZeY
FUSTPZ4o
EUSTPZe?
EGSTPeon
EUSTPZeY
EuSTP2SY
EUSTPZS)
EUSTPeS2
EQSTPZS]
EUSTPZSe



SUBROUTINE EQSTPF (Continued)

arsS Potide g Frany (b loetU relewdTE (M) eEMULA®EQOSIS (M) ))
L mat o)
1# (Y elele ¢) ulh 10 w2t

ErL s (et laesmyJleryibPemuJa) Z (EPLJDeb MUUASE NI TAE MUY

16t pec tbrjapminik) 41 by ACC) LU TO 60
PMUTE 2 U

(LI TSV I I SN ENT

Emule 8 Fru

U Te s &
eln VS 8 1,7 (enuS ()R (FNitel,))
G T (g200ehr e A0 nParl
6cy FRINT J40m0 Tk gF/erotMulagbmulY
S10F 82,
C
C ®oo SOLVE P PoRLeELeRVIFEVy OM LVaV HOUNDRY
c
&5u PYBEXR (n2 (M) @ (] qa) o/ 1)enl (M) ®alUG(T))
RisT/7/7C(w)

ABZRAN (M) e 2R ] (») /1]

Abminr2(r)etlar /1)y

PazwPy/ny

HoXBH (M)ep/r])

It (FPR®DAS LT, =1 ed% JANL, NPaRT LT, B) 60 TU 683
HWVEPX® (] aFk®iax)

EUSTReSY
EUSTPC50
EUSTPZSY
EUSTPZ258
EQSTPZSY
EQ0SThkebU
EUSTPgO)
EUSTRP26?
ELSTPZO3
EQSTPZ6e
ELSTPcOS
EUSTPZoe
EWSTPeOY
EQSTP26M
EUSTPZ209
EUSTP2TV
EQSTPZY)
EUSTP272
EUSTP¢T3
EUSTPZT4
EUSTPETS
EQSTPZTe
EWSTPZT?
EQSTP27H

1P (eaopaY LT, ®i4uY) RVERPV/(X)/ () ,0 (et (M)enl (M)®ny)ORY)=(AGAPORVEWSTPZTY

J)erv)
B0 10 69
653 HYBlqofpr (2 )8 () el )08/N(M)
6% NL T8
659 HV] = my
HUTBNC Te)
I (0 ? qiile 27) GU TG KT
ArZ = I..(hif")-MP(N)‘Hﬂv)'FV
PU 8 A O®RV/APa(PeprboNy)tyeeD

PUR 8 RE/0Z¢(X]0MVE(n(M)el SHEP (M) ONY) ) /AZ88Z= (2,840 3,0APHY) 0Ny

kv 8 AMAXT RV (PVaPU)/P(Py]oF=l?)

EWSTP2B(L
EUSTP2B]
EUSTPZB?
EUSTPZE3
EUSTPLUe
EUSTP26Y
EUSTP2bA
EuSTP2bY
EWSTP2b8
EUSTPZEB9
EUSTPe9Y

IF (ArS(FVenV 1) oG ACCONY (ANUL, BDS(RVenY])) LT, leE=lg) GU TO 6585 EGWSTIPE9)
FVv 3 FO(MYeb PR2(MI®T=pPRL(M)I®((/RU(M)G2,8/KLIM)/T)a/R2(M)ORV/T)ERVEUSTP2Y9Y
1P (pard o601, 1) WL & leeClim)®(]aT)0e (] ,/3,)eDn](M)e(]=T)

FL 8 Fvab S| (v)eby® (]l /rve]l o /NL)®(A2(M)/Tealtim)=],)
CU TO (3T900)8orTReBITo10GL109) NPARY

67¢ PRINT) J(OarvobV]oFVePOIPOUFst VerL ot Lo T oWV
S10P &7,

C ececen

c CALCILATIULS FOR EACH PHASE

C eocons

(o

C oo SULTN brast

T00 FhU 2 | o/WHUS (M) /vm),
RUE = WNCR (M) @E ST (M) &
P B EMUR(FLSTO (M) @FMUR(EQSTL (M) ¢EMUSEUSTS (M) ) o ROE ) oROE
GV Tn Je0r

c
C owes SuLlr = (Judlu MIXED PRASE
141 FMax = (FebSUIM))/ZlELULIM) o SOIM))
It (v quT, PMEXOVIOIM) el ebMpX)OyS0O(M)) (U 1O §9¢
C FInu T PUB vy E IN SL REGIUN
795 EFS 8 E=lFliV(Mm)oY
ES 8 EPSefbUV (M) OVvS
Y¢ B ESetnd(M)
Th & (YeeQurT (¥20Y2aY3(M)))/Y] (M)
NCEsn
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Reproduced from
b:g'roav‘:cilea ble copy}

enneee

EUSTPCY3
EUSTPZ9e
ELSTPE9S
EUSTP2906
EUSTPE9T
EGSTPE9N
EuSTP¢99
EUSTPIOY
EWSTPIOL
EWSTPI02
EWSTP303
EuSTPI04
EWSTP30S
EUSTP 300
EQUSTPIO7
EOSTRPIUS
EUSTPI0Y
EGWSTP3)y
EUSTP31]
fOSTP31¢
EGSTPI1)
ELSIPI)e
EWSTRPILS
EUSTPIle

S e em———-
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SUBROUTINE EQSTPF (Continued)

157

1#0 = T¢ pLSTrEsl?
NCSBNCSe ) EWSTHs)»
IFINCY 4GTe ¢r) GG TO Ty FLUSTP LY
Ela 8 vuim)zve PLSTEJOL
Eml) = tLibel, PLETE )
ESP = CLol(m)eamliCl (M) /1Foe) buSTkdce
ETAP = ot SFOETA®®/EES (M) XA X IE)
POE & WROS (M) BELSTGIM)®ES PLUSTP IS
H s FOVUIM)I®(Thal () ebMUS(EOSTC (M) oEMU (EUSTL (M) ot MUSELSTS(NM) ) onih EWSTRYED
1 Yewkik BELSTP I
Hr 8 FOVOIM)I@(FUSTC (M) oMU (2,0 ST (r)epMUOI SOSTSIM))erut ) o TARELWSTPIZ?
1 =EUSTOL(M)®RHNG (M) oL 1 a®ESH FUSTPIZr
1+ 8 TFakh/H¥ EuSTP Iy
ES & EnS(M)eCrT (MI®TFari:CI(MI/Ir FUSTP 30
VS B (Fo=FFY) /0ELVIM) ELSTHA3)
IF (AnS(TFelFN)/TE o7, ALC) w0 TU Tou tEWSTPI3/
P 8 FOVLIMI®(TFe],) FusTri33
GU TO 1uCO EWSTP I
PHINT 140 7elb 418 0eT oM EusTPI3S
SICP 7THy, tWSTP 336
EWSTPIIT

[ 244 | [WUTDL PHASE EWwSTPIIE
SOLVE rUk PLMe viMy ONn SLel L INF FLUSTP 33y

Y &8 Fephk| (M) FLSTrRIGL
TF 8 (YegeQUr] (Y /®YPaY3(M)))/Y ) (M) ELSTH 36
FE 8 BS & EnS(M)eCkI(M)*TFenDCI (M) /1F twSTPI6?
e 10 &S00 TC GFT vS UN SeSt LM FUSTPse 4
NMART 8 2 EUSTHI6e
GU 10O &2 PWSTPIGS
VLME VSe (b abS)/NENV (M) EUSTPIun
PLM s EuVvOiM)e(TFel,) EWSTrae/
SOLVF FUR PlLBs vin ON LeLVv LINE EUSTPIGR

If (ML F0e 3) 6O TU B1b EUSTPley
I (F Luf, EC(M)) GU 1O bov PWSTP3S(
IF (N oENe 1) GO Tu k)2 EWSTiS])
HL 8 vC(MY2Y EuSTP IS¢
Xl 8 (Jomil)/N) (M) /¢, FWSTP3H3
X 8 SURI(Y]I®*X1eCC(M)) EUSTRISe
T = Y ,o((x=k])00(),/3,)=(Kkeal)o(],/3,)) %0 ELSTP3LS
GO 10 650 TO ORTOIN £L EWSTP 350
NPART 8 2 EUSTP IS/
GU 0 Ad0 EWSTHIHN
T 8 TM(M) FUSTHR DY
EL 8 FLUIM) tuStraseu
EwSTPR36)

HEGIN LTEMATION LOUP TO FIND vie UN LelV RUUMDKY, Olven F EUSTHIb?
FUSTMIOS

TLaT & cTiselL ¢ Tusle; % £TUSEC(W) tWSTHibe
TLAST = 0, 5®(TueTL) FUSTR IO,
USE PamsROLIC ESTIMATE OF SLOPES TO UsTAIN | FUk E EwSTPJbL
$28823s(Tie L)/ (ETU=ETL) FUSTPIBT
IF(ETL oNFo ELCIM)) LWSI1PIODL
1S2 8 (TLeTM(M) )/ (FTL=ELO(M)) oS0 (TUI=IM(M) )/ (} TUiapLUIV)) EUSTP by
T 8 T)¢(S2¢(S23=8S2)*(g=bTL)/(ETU=LIL})®(Eat L) EUSTRIT,
TLAST 3 0,59 (TUeT1) FWSThaTI1
NCEBSr ¢ APAMIge PLSTPIT¢
NCBSNCHe ] EWLSTPITI
IF(T ,Gie TU) ISi,M®TLASTor Q0]U FLUSTPaTe
TP CT JLie TL) Tl 1®1LASTeLoveTL LWSTRPIIS
IF INCH oGTe 2r) OO 10 nHe? EWSTP3Te
EGSTPITT

GO YO 65~ 10 COMPUTF mLIELoRVEV FOW GIVEN | pWSTP3le
FUSTPITY

GO TN 650 EWSTPIHY
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SUBROUTINE EQSTPF (Continued)

IF (AHS(EeEL) oLE, ACC®AMAA] (ADBS (L) JELOIM))) U TO Bly
S12 & (I=TL)/(EL=FTL)
$23 = (TU=T)/ (ETU=EL)
S¢ 8 §1¢eS23=(Tu=TL)/ (ETU=LTL)
TLASTY =)
IF (EL +LTe €) GO TV HIG
T o Te(52¢(512aS2)*(EeEL) /7 (ETLeEL))®(Lotl)
ETusfFL » TusT AST 8 GU TO 816
T 8 Te(520(523=S2)*(EeEL) /7 (ETU=EL) )@ (E=bL)
ETLSEL &% TLsTLAST $ GO TO K16
VLBsYC (m) 7R,
PLBSPC (m)ePy
60 YO ®¢S .
SOLVE FUR PLB AYOVE CRITICAL POINI UN Vv = VC LINE
VLE @ V(M)
RV & 1,
Xl ® EapO(M)oePS) (M) ®ZKU (M) ®RY
X2 = EPS] (M)®(ZR2(M) PRVe2 ,8.K] (M) ) RV
T 8 (X)oSQNT(X1@X)ea ,@EPS2(M)®X2) )/ (2.9LPS2(M))

EGSTP3n)
EUSTP382
EUSTP3B)
EUSTPIEG
EGSTPINS
EUSTPIBG
EWSTPIBT?
ELUSTP 38l
EQUSTP Ity
EuSTPI9y
EWSTP49)
LUSTRIYZ
EUSTP393
EUSTPIYe
EQSTPIOS
EUSTPIDE
EWSTPI9?
EUSTPION
EQUSTPIYY

PG B RVET/(IC(M)O® ()= (BIM)=HP (M) O®KV)OKY) ) ({RUIM)eZK] (M} /Te/K2(M)SEQSTPeOQU

1(Tal o /T)®RV) SRV ORYVPV( (M)

PLB & PL(M)®*FG
RM & | ,/VLM
RE & 1,/7vLY
2] 8 (PLMaPLB) / (RMekH)
22 8 (Rp®PLMepMOPLB) / (RMeRH)
Pl & 21/vael2
23 ® ALUG(PLM/PLB)/ALUG (KM/RB)
8 (ALOG(RB)®ALOG(PI M) aALOG(RM)®ALOLIPLE))/ZALOG (RM/RB)
ALP2 = (30ALUG(le/V)o gt
F o (PLM/(RMay ,/VLO(M))e23OPLM/RM) /(Z]1el30PLM/RM)
F o AMINL()soAMAX] (UssF))
P s EXP(FOALOG(PL)e(],=F)®ALP2)
60 T0 1u00
PRINT 1110eToTMINGTMAX TUsTLIESETHETLIETU
STOP 827

LIGUID=VAPOR MIXED PMASE
AL & 1,¢eCYl(M)o(leeT)®0(],/3:)0D1(MIO(],=T)
EL ® EVEPS] (M) ®PVE (], /RVe]) /RL)I® (A2(M)/TeA)(V)e],)
CONSTRUCT UPPER AND LOWER BOUNDS ON E,4 1
BEGIN ITERATION LOOP FOR E WITH T AS A PARAMETEWR
ETU = EYV
60 T0 860
ENTER FROM 378 FOR vV LESS THAN VvC
ETU s EL
ETL & (vevLO(M) ) Z7(VVO(M)eVLOIM) ) O (EVO(M)=ELUIM) ) ¢ELO (M)
FMAXS (E«ELO(M)) Z(EVO(M)=ELO(M))
IF(V .01, FMARXOVVO(M) e (1l.=FMAX)®YLO(M)) GO TU 990
Tus Y ] TL & TM(M)
TLASYS0,50(TULTL)
LINEAR INTERPOLATION TO ESTIMATE 1
NComo
NPARTa)
T @ TLO(EETL)®(TU=TL)/(ETU=ETL)
NCOBNC6e])
IFI(NCS ,8Te 2n) GO TO 892
| (2} § .bT. 'u) T, 1@TLAST ¢ 0,89990TY
IF(T (LTe TL) ToO0,1OTLAST (.89990TL
GO 10 650 TO COMPUTE RLs ELe RV, EV FON GIVEN T
60 T0 650
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EUSTPeO)
EWSTPeU2
EUSTPe U3
EQSTP&0s
EUSTP&4 05
EUSTPeUN
EQSTP&AOY
EUSTPealb
EUSTP609
EUSTPaly
EQSTPel
EQSTPel2
EQSTP413
EUSTPals
EUSTPe1S
EUSTP&)
EQUSTPa1Y
EQSTPe) 8
EQUSTPe )9
EQSTPe2U
EQSTPe2]
EQSTPe22
EQSTPe23
EWSTPeRe
EQSTPa2S
EQSTPe26
EOSTPa2Y
EQSTPa 28
EUSTPa29
EUSTPAIV
EQSTPa3]
EQSTPe32
EQSTP43)
EQUSTPads
EOSTPa3S
EQSTP4 30
EUSTP4Y?
EQOSTPAIS
EQSTPe 39
EUSTPAG(
EUSTPeS]



SUBROUTINE EQSTPF (Concluded)

8r% EV = (RLOV=) ) /(RL/KVe] o) ®(EVeEL)oEL EQSTHeGZ
[F(ABS(LeFT) ,LEe ACCH#AMAX] (ABS(E) sELU(M))) GO TO 890 EQSTPa43
TLASTsT EQSTPa4s
TP (ARS (L Taf IL) oGTele) SIZmiTalL)/(ET=ETL) EQSTP44S
TP (ARS (L Tiiek 1) (GTe 1,)S5238(Tu=T)/(ETU=LT) EQSTP4GG
S28812e52%« (TU=TL)/LETU=ETYL) EQSTP4&?
IF(ET 1, €) GO TO Ru¢ EUSTPes
TeTe(Q2¢(S12=S2)*(E«FT)/(ETL=ET) )@ (E=tT) EQSTP449
ETUSET » TusTI AST $ GO TO 870 EQSTPASY
88¢ TET0 (820 (S23=82)® (E=ET)/(ETU=ET) )@ (E=ET) EGSTPaS)
EILSET » TLs=TLASI & GO 10 870 EQSTP6S52
890 P s Pr(m)e(PVaPVO(M)) EQSTP4S)
GU Tn ly0n EUSTP4SS
892 PRINT 110ReToTMINGTMAXsTUSTLIESETIETLIETY EQSTP4SS
S10P Ay EQSTP4SH
c EUSTPAST
C oo vArOR PHASE EQSTP458
900 RY 8 YyCiM)/ZV EQSTP4S9
Xl 8 EapO(M)eFPS] (M) ®2KO (M) ®RY EUSTP& 6O
X2 8 FPY) (i) O (/n2(M)®RVa2  8(K] (M))ORY EQSTPeG)
T 8 (R1eSNHT(X)1OX 10k, 0EPS2(M)®X2))/ (2.,%EPS2(M)) EUSTP4b?
P a PC(M)®(RVET/Z(2CINF, 0 () e (B(M)alP(M)ORV)ORY))e(ZKO(M) LK1 (M)/Te EUSTPAGI
1 ZIK2(mM)®(Te] ,/T)0RV)ORVERVePYO(M)) EUSTPebS
GC TO lyon EUSTP465
965 CUNTINULE EQSTP& 6O
C EQSTP4OT
C oo CUTOFF AT (ERO PRESSURE EQSTPe68
990 P = 0, EQSTP469
1000 KETURN ECSTPaTO
1100 FURMAT (bA}O) EQSTP4T)
1101 FORMAT(nlNeTEN1Q.3) EQSTP&T2
1102 FURMAT (JHes 79X ¢5H INDmA25Me INm]2¢® KEAD IN EQSTPF®) EQSTP4T73
1103 FORMAT ([Hee® | OCS42 IN EQSTPF®¢5Xe® EMUUIPIPPEMUIME #95E10,3///) EQSTPATS
1106 FURMAT (LHao® _OCSA2 IN EQSTPFO,5X,® RV],POsPOPeIRV i Me®8E)0,37/7/) EQSTPATS
1105 FORMA " (jHao® LOCEI12 IN EQSTPFO.SKee TAPGIPVP PGP ToPV M #,3E10,EQSTP470
137633003777) EQSTP&T?
1100 FORMAT (iMeo® | OCB620 IN EWSTPF ®¢S5Xo® ToEZoMIEMUIAIEMULIES®¢SELO0,3/7EQSTPOTS
177) EQSTPeT
1107 FORMAT([Heo® | OCS T8O IN EQSTPF ®45Xs® TFoTFU.ToM 8994E10,3/7/7/) EQSTPABO
1108 FURMAT (LHeo® LOCSROZ IN EQSTPF®sSKe® ToTMINeTMAX9TUSTLIEIETIETLY EQSTP4BI]
1ETU #,5c1ne3/4E10,377/7) EOSTP4 B2
11090 FURMAT (lhao® LOCB6TO IN EQSTPFO4SXe® KVIRV]sPVePOPOPIEVIRLIELITIMEQSTPAB)
1] s 8,8610,3/5F10,3/7/7/) EQSTP48s
1110 FORMAT (LMa9® LOCSE2T IN EQSTPF®ySXee ToTMINgTMAXoTUyTL4ESETIETLy EQSTP48S
1ETU @4SL1ne3/4E10,3777) EQSTP4BO
END EQSTP4OY
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APPENDIX D

EXTENDED TWO-PHASE EQUATION OF STATE:ESA

The subroutine incorporating the extended equation of state is listed

in this appendix together with a description of the CALL statement and the
nomenclature,

The subroutine, termed ESA, is called at two points in a wave propagation
code, The first CALL is made from the initialization routine (GENRAT in SRI
PUFF) while material properties are read in., All subsequent CALLS are made
frow the routine that controls stress calculations during wave propagation
(HSTRESS in SRI PUFF). In preparation for the initializing CALL, the solid
density (oso) and the Hugoniot parameters (C, D, S, [') must he available
in COMMON. Additional material data are read in directly by the subroutine
ESA during the initializing CALL: they are unavailable to the rest of the
program, All other input and output variables are inserted through the
CALL statement, The initializing CALL is l

CALL ESA (NCALL, IN, M)

where NCALL indicates the type of CALL: a zero value is for
initializing, one is for computingz pressure

IN is the file containing data

M is the material number

O e T

During this CALL the subroutine ESA reads two data cards and initializes

its array variables. These cards each contain an identifier in the first

10 columns (in Al10 format) and 6 constants in E10.3 fermat. A sample set

for titanium follows:

ESA TI 1 -5,000E-01 O, 0. 0. 3.970E 00 1,490E 10
ESA Tl 2 5,914E 09 9,560E-01 1,182E 11 O. 5.300E-10 1,026E 11

The first three constants are the parameters fl, F_, and F2, which apt.~ »

1
in Eq. (93), the expression used for compressed states. The other . "2
values are the pressures, -densities, and energies associated with thi.c

points on the expansion equition-of-state surface: Pl,pl, El; P, 02, E ;

2 2
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and P3, p3, Es. These nine values are used to construct the coefficients

go, g bo o did b3, which describe the expansion surface,

1’ P hl'
The second and all subsequent CALLs are made during the wave
propagation calculations to obtain the pressure. The form of this
CALL is

CALL ESA (NCALL, 5, M, C(J), D(J), E(J), P(J), DPDD(J), DPDE(J))
where D and E are the density and energy provided to the routine
P is the pressure computed in ESA
C is sound speed from ESA

DPDD

QP/aP from ESA

DPDE = 3P/3E from ESA,

The subroutine ESA is constructed in two parts: one for initializing,
the other for computing pressure. The pr ssure computations are further
subdivided into portions for compressed and expanded states.

A nomenclature list is provided for the subroutine. Following this

is a listing of tiie subroutine,
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NOMENCLATURE OF INPUT AND PRINCIPAL VARIABLES IN ESA

B, (bys b1’ b2’ ba)

EQSTC, EQSTD, EQSTS

EQSTG, (I)
El, E2, E3,
(El' E2’ ES)

F1, F2, (F , F)

F3
F4
Gl §
b (Il)
G2
G3
P1, P2, P3,
P,P,P
: 1’ T2’ 3)
RHOS
’ (OSO)
R1, R2, R3,
(pl' p2’ p3)

Coefficients of the density expansion

Coefficients in the Hugoniot expansion,
dyne/cm2

Grlineisen ratio

Internal energies at data points on the
expansion E-P-V surface, erg/g

Coefficients of the nonlinear energy
term for compressed states, gz/dyne/cm

2F - F )/

( 1 2) pso
2

F -F

( 2 1)/pso

Second term in the expansion for
Grliineisen ratio

IF = Ii

rl/pso

Pressures at data points on the
expansion E-P-V surface, dyne/cm
Initial solid density

Densities at data points on the
expansion E-P-V surface, g/cm3
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OO OODOOTOOOD

SUBROUTINE ESA

SUHRNUT JNE eSA(NCALLoINeMoCoDot oPoUPDKRLPUE) ESA 4
FSA 3

HOUTINE COMPUTES PRESSUKE FRrOM SIMPLE Tw0=PHASE EQUATIUN OF STATF.£SA 'y
ESA HAS Twl PARTSy COKRESPUNWDING TO REAUING AND COMFUTING ESa ]
ESA ®

NEAD INPUT (NCALL=O) . CALL IS FROM GENKRAT, ESA 7
INPUT  « NCALLe INe Mo MATER]AL FHOPERTY CARDS ESA b
OUTPUI « PHRINTS CAKD IMAGESy OWGANILZES DATA INTO AKMAYS ESA v
6SA 10

CUMPUTE PHESSIRE (NCALLS=]) CALL IS FHOM HSTKESS USUALLY. ESA 11
INPUT o NCALLOM9CoUF ESA le
OUTPUI e« CoPyLIPDE £SA 13

b SA le

NAMER CUMMUN EUSTCUME

REAL MU gMM EWSTCUMY
COMMDN /E(S/ EUSTA(R)sEQSTCIO) sEWUSTD(6) st USTE (6) JEQSTG(O) o EWSTCUMeG
I EUSTH(O)sEWUSTNIL) sEUSTS(H) sEVSTVIR) sCLULIH) sCHLI(6) L2 (06) EWSTCUMS
CUMMON /MELT/ EMELT(6¢5) eSPMIG) EWSTLUMe
CUMMON /RKHG/ RHO(6) s HHOS (B) E@STCUMT
COMMON /TGR/ TSR(E930) oEAMAT (6920) s TENS(6,43) EQSTCUME
COMMON /Y7 YO (6) e YADD(6) oMU(K) eMUMyYADDM EUSTCUMS
ESA le

DIMENGIUN H(8406) ok 1(6)sF2(06)oF3(6)eFe(6)s6)(6)e:2(6)963(06) ESA 17
DATA 1DU/1h / ESA s
£5A 1y

IF (INCALL JEW, 1) GU TO 200 eSA  2v
(XX IZXTIXY} [ X2 2 X 22X ESA 21
READ INPUT DATA ANU INITIALIZE ARKAYS £Sa 22

Y YYTIYI L) (X242 212 ESA 23
READ (InollUO0Y ALoGL(M)oF ) (M) oF2(M)oPlok]l k1L ESA 24
WHITF (001100) B)4Gl(M)oF) (M) gF2(M)PloR],sE] ESA @25
WKITF (6491121) JODeIN ESA 2o
READ (IN91100) AL oPLok2eE2+PIeHIVED ESA 27
WRITF (0011G0) A) oP2loN24E29PIsRIgEI ESa 2»
whITE (0e1121) I0DIN ESA 2y
INTIJALLIZE COEFFICIENTS IN EXPANSION FUWUATION ESA k1)
RUSRmOS (M) ESA 31
FI(M)s(co®tl(M)=aF2(M)) /RO ESA KF
Fo(M)s(P2(M)=F]1(M))/RO/KO ESA 33
G2 (M)2EUSTG (M) =R] (M) $ G3I(M)=G) (M) /KO ESA 3e
INIITALIZE =B~ ARKAY ESA 3%
AUSEQST( (M) /RN ESa J6
AlsPleRI®F1® (G2(M)eR1#GI (M) )=RLICELOF]®(FI(M) o ]1®Fa(M)) £SA 37
A2BP2eR OF2% (G2 (M) oK28GI (M) ) =RR2WEWE2® (FI (M) ¢k28F 6 (M) ) ESA 38
AJBPIeRINFI® (G2 (M) oHIBGI (M) ) cRICEIPEI® (FI(M) ¢ RI®F 4 (M)) ESA 39
REDEFINE A 10 INCLUDF DENOMINATORS ESA &0
ROSKHOS (M) ESA »])
001=RN=K1 % DU2BRO=R? s DO3sRO=H] £ Y Dl2skleRe ESA &2
D13sR)en) 4 D23sR2=R3 ESA 43
AUSAD/ (LV1*U024003) S Als AL/(DO1®DOL*D12%013) ESA e
Alme=p2/ (D02%D02*D12%023) S A3s A3/ (D03%L0OI*D)I*P23) ESA 4%
Bl(loM)8=aA0OK]SR2ORI=RO®AL #R2P®RI=ROFR] ®AZERI=HNPK]OR2®A] ESA 4b
B(24M)BROWKH]® (A2¢A3) ¢RO®R2® (A) 0AJ) ¢RO®RI® (A *a2) ESA 7
1 CRIOKEO(ADGAI) ¢R1I®RI® (AQ*AZ) sR2ORI® (AQWAL) ESA 48
B(3¢M)BoRN®(A16A2¢A3)=R1®(AUGA20AI) aR2%(ADGALleA3)=RI®(ADOA]L+A2) ESA 49
B(4oM)sADeALeAReA] ESA Sv
RE YURN ESA 51
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SUBROUTINE ESA (Concluded)

C oedcceee (IIITIT TS
c CALCULATION OF PRESSURE AND SOUND SPEED
c 20000000 40000000

SDO IF (D LT, RMOS(M)) GO YO 300

c ®ee  COMPRESSION EQUATION OF STATE
U (VDeRHUS (M) ) /RHOS (M)
PHaUe (EUSTC (M) ¢U® (EUSTD (M) ¢UPEQSTS (M) ))
GO1SEQSTIG (M) 20G] (M)
GFel, =0,50U®GG])
FFaF)(M)e)®F 2 (M)
P & PHOGF ¢ (GGI®D ¢ FF®E)@E
OPOR s((EQSTC(M)eU®(2,8E0STD (M) eU®I ®EQSTS(M)))SGF
1l oPHO (L RPEUSTG (M) eURG]I (M) o (GL(M)®D o F2(M)CE)OE) /RHOS (M)
2 +GGl*%t
NPDE & LGI®Y o 2.%FF*E
GO T0 350
C
c ¢oe  ExXPANSION EQUATION OF STATE
00 GGIsN® (L2 (M) eneGI(M))
FF sDe(pI(M)eneFa(M))
BTERMSaR (1 9M) oD (R (2oM) DO (BI3eM) eDOH(49M)))
P 8 (DerMHNS(M))®BTERMS o (GG3 o FFog)®E
DPDOR 8 (6G2(M)e2,8N®GI (M) o (FI(M)e 2,%0%F 4 (M))SE)eE
I THTEKMS ¢ (DeRNOSIM))I®(H{(2eM)eD® (2,8 (39M) eI B (4oM)))
DPDE 3 LGY o P, %FFeE
350 CSQ = UFrNR ¢ pehPNE/DeS?
IF (CSU GTe n,) CBSURT(CSW)
RE TURN
1100 FURMAT (A1GsTFI(63)
112] FURMAT (1HepTQXeSH [NUZA2¢SHy INR]2,® =ESA=®)
END  FSh
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